XGILF — A Conceptual Frame for Compiling and
Linking Generic Libraries

Roland Weiss and Uwe Kreppel

Arbeitsbereich Computeralgebra, Wilhelm-Schickard-Institut fiir Informatik,
Universitat Tiibingen
Sand 13, 72076 Tiibingen, Germany
{weissr, kreppel}@informatik.uni-tuebingen.de

Abstract The classical approach to compiler construction impedes de-
velopment of languages that support the generic programming paradigm,
e.g. C++ and Ada95. We will document the problems and describe an
conceptual implementation frame that better serves this purpose. It is
built around an XML based intermediate representation of the code. The
key point in our approach is to defer code generation to link- or runtime.
Moreover, we will show how the characteristics of our frame enable new
high level optimizations, like runtime algorithm selection for generic func-
tions.

Keywords: generic programming, algorithm selection, compiler con-
struction, code generation, XML

1 Introduction

A typical compiler is divided into two major parts. First, the source program is
lexically and semantically analyzed and transformed into an intermediate repre-
sentation (IR) by the front-end. Code generation, the back-end’s task, operates
on this representation and outputs object code, which is executable, target spe-
cific machine code. The operating system usually provides linker! and loader to
get these files into memory and to execute them. Figure 1 depicts this infras-
tructure, it follows [3].

But the two parts of a compiler, the front-end and the back-end, are perceived
as one component by the developer, they were introduced primarily to enable
a modular compiler implementation. Therefore, they are normally combined in
one program. After creating the executable or library, the traditional compiler’s
work is done. No part of the compiler executes at runtime?.

Today’s C++ compilers adhere to this design, because they need to support
the operating system’s library and executable formats. This fact has a deep im-
pact on their support for templates, C++’s generic programming facility. When

! In most cases, object files are stored in a proprietary, compiler specific format. There-
fore, a linker from the compiler vendor turns them into libraries and executables
conforming to the operating system.

2 We speak of runtime from the very moment an application program is started by
the user.



2 Roland Weiss and Uwe Kreppel

source code object
(library) | code > OS linker
> [ compiler J;,” \_(library) ,
(front- & % e‘;(rz(;?;;g
source code / back-end) object
(main) code 3> OS loader
(main)
compile time runtime

Figurel. Traditional compiler and operating system infrastructure.

one compiles a program that uses a generic library like the STL? (see [35] and
[32]), all generic concepts, i.e. template classes and functions, must be instanti-
ated with the application’s concrete types.

One major problem here is that such libraries cannot be precompiled, as
libraries are collections of object files, which contain only executable machine
code. At this stage, all language specific and user defined types have to be
resolved to machine level data types. Therefore, it is not possible to produce
machine code for a generic concept, because the concrete type is not known
at the library’s compilation time®*. This forces the C++ compiler to recompile
generic concepts over and over again. The compiler implementors came up with
different solutions for this problem. They vary from postponing compilation
until instantiation time to storing instantiation templates in proprietary formats,
which are not accessible to the user.

Furthermore, as C++ uses implicit instantiation, a good strategy to find all
required instantiations is needed. Two strategies are common practice, the first
one is based on interaction between the linker and the compiler, and the second
one relies on a so-called repository (Stroustrup gives a good survey on this topic
in [36], p. 365{f). Note that this is not true for Ada95, which forces the user to
explicitly state every instantiation used in the subsequent code.

The conclusion we draw from these observations is obvious. The dynamic
and static libraries used in most contemporary compiler and operating systems
are not appropriate for holding generic libraries. In the rest of this paper we will
present our alternative approach, which aims at overcoming this situation.

We propose to store generic libraries in an intermediate representation and
defer actual code generation to link- or runtime. Of course, this proposal raises
several important questions, because it influences the compiler and operating
system design. We have to explain what kind of IR is employed, how the compiler
is structured and the level of support the operating system has to provide.

3 The STL is now part of the official C++ standard library.

4 A uniform object layout can be assumed to circumvent this problem, but this is not
possible in C++ with its built-in types, and it also results in bad runtime perfor-
mance.



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries 3

We want to make clear that we do not intend to present a completely im-
plemented and runnig system. Rather, a solution to the instantiation problem
is given in sections 2 and 3. Building on this proposal, we will try to identify all
interdependencies among affected components and outline the remaining open
problems and possible answers, reflected in sections 4 and 5.

2 The Intermediate Representation XGILF

The choice of the IR depends on several parameters. The higher the abstraction
level, the more options for code generation are available because less information
is lost, source languages are more easily mapped to it and one achieves good
target machine independence. But it takes more time to produce code from a
high level IR and data-flow analysis is more complex.

Moreover, there exist several designs for IRs, the most common ones are
abstract stack machines, e.g. the Java Virtual Machine [29], register transfer
lists, which are used in the gce project, abstract assemblers (see [33]) and all
flavors of tree languages.

We favored an IR that is closer to the source language than to the target
machine in order to be able to perform high level transformations. This is im-
portant for generic programming, as depending on a generic function’s input
parameters, which can be the instantiation’s types and their actual values, we
may want to switch between different algorithm implementations of the same
function. This application will be discussed in sections 4 and 5.

Another decisive motivation was the availability of tools that can handle our
representation. Recently, a lot of work is being invested into XML [5], which is a
textual tree representation at its core. So we adopted XML as our representation
format. All XML capable browsers can be used to display it and the wide range
of available software, e.g. parsers, class libraries and converters, is waiting to be
exploited. The linking capabilities of XML make it an ideal choice for a library
format, different parts of the library’s components can be referenced inside the
very file, inside the file system and even on the world wide web. Our IR is named
XGILF, an acronym for XML-based generic intermediate link format. An IR
formulated in XML has one more powerful feature, we get platform independence
at the representation level.

XML, combined with a DTD, supports typing of its elements only in a rudi-
mentary form, however we are interested in a strictly typed IR so that we can
type safe instantiate generic concepts stored in the library. Therefore the con-
cept’s symbol table is also encoded in an XGILF file, together with its syntax
tree.

3 The Infrastructure of a System Based on XGILF

We’ve just explained the content of an XGILF library or program file. The fact
that no machine code is stored inside it necessitates drastic changes to the sys-
tem’s infrastructure, compared to the traditional one shown in figure 1.



4 Roland Weiss and Uwe Kreppel

In contrast to a traditional compiler, in our system its two parts are indepen-
dent programs that operate at different times. The front-end performs the usual
syntactical and semantical analysis and outputs XGILF. It is still called by the
developer and runs at compile time. Instead of feeding this IR directly to the
code generating back-end, we use it as the on-disk representation of libraries and
executables. The abstract representation still contains template code which has
to be instantiated. The code instantiations will be subject to traditional code
generation® This code generation will take place at a later stage. There exist
two natural possibilities: we can produce machine code at link time or at pro-
gram startup time. In the case of dynamically linked libraries these two choices
are virtually the same. We have exercised the startup option for several reasons.
The most important ones are that we wanted the ability to modify an executable
even at runtime (as we already mentioned) and to use dynamic libraries.

Thus, the operating system loader’s task of reading an executable into mem-
ory and starting its execution is augmented by code generation. The code gener-
ator becomes a runtime component and turns into an operating system service.
For proprietary systems, like Windows NT and various Unix flavors, one does
not have the power to extend the system loader. In order to avoid this problem,
we create two files for a main program. One is the XGILF file, holding its semantic
information. The second one is a system conforming executable that starts our
code generator. The task of the linker is quite simple, it has to extract requested
segments out of an XGILF library file and turn them over to the code generator.

Let us ponder about the code generator some more. Michael Franz sketched
a similar system in his dissertation [15], which was later implemented and pub-
licized [16]. His incentive was to provide the foundation for a component based
operating system, he was not concerned with the instantiation problem of generic
concepts. He advocates a fast, consequently unsophisticated code generator, be-
cause the user will not accept perceivably prolonged startup times. Of course,
code quality suffers in this approach upon the first launch of a program. We cope
with this problem by introducing a code cache, which holds the latest version of
a translated XGILF file. Now we can afford a long compilation run, which applies
the whole range of traditional optimizations. For a main program, we can fill
the cache immediately after the compiler front-end emitted its output®. This
corresponds to code generation at link time. Figure 2 depicts our system”.

The infrastructure just presented gives us the power to store precompiled
generic libraries and create efficient instantiations of its generic concepts: At
startup time all concrete types of the generic concepts are known and completly

5 Note that instantiation itself cannot be called an optimization, real optimizations
are only possible on the instantiated code. But we will use the term in this context
anyway, because it is common practice to use the term optimization for many code
transformations in the field of compiler construction.

5 This policy makes only sense if the application is run on the same machine on which
it is developed and compiled.

" In this and the following figures we use standard flowchart shapes: A rectangle de-
notes an active process, a rectangle with a waved lower line denotes a document or
textual data and rectangle with bended left and right lines denotes stored data.



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries

source code XGILF XGILFE
(library) 4 (library) 77 linker
\L executing
= / program
compiler XGI!‘F L] code
front-end (main) generator
/V zﬁ code
cache
source code launcher i
(main) for code > OS loader
generator
compile time runtime

Figure2. Compiler and operating system infrastructure using XGILF.

resolved machine code can be produced from the XGILF representation, with-
out using boxed representations of built-in types. This comes at the price of
prolonged response times whenever XGILF code is requested whose architecture
specific representation does not already reside in the code cache. Possible cases
are startup time and whenever modules are dynamically linked. But owing to
the late time of code generation, additional optimization opportunities arise.

4 New Optimization Opportunities

A target independent IR allows the system to emit code tailored for the proces-
sor architecture the program is actually running on. Nowadays this is important
even for the same architecture, because different members have heavily varying
characteristics. E.g., the family of processors compatible to the Intel Architecture
evolved from a pure CISC architecture to a typical RISC architecture internally.
Furthermore, most manufacturers of such processors are right now on their way
to a 64-bit architecture, which will be needing other optimizations (alignment,
cache locality etc). Also, new features are added constantly with every new pro-
cessor generation, like MMX, Internet Streaming SIMD Extensions (see [22] for
both) and 3DNow! [1]. Our approach can handle such varying system configura-
tions in a clean way by compiling only those features into the executable code
that are really available at the platform the program is launched on.

Another noteworthy point is the ability for intermodular optimizations. At
runtime all active modules are known and data-flow analysis is not limited to
their boundaries. The optimizer knows the context of a called algorithm and
can perform individual manipulations like inlining, code movement and register
allocation tailored to the situation.

Let us concentrate our main efforts on transformations specific to generic
programming now. First, we will clarify the terminology. A generic function is
a function where some or all of the input and output parameters’ types can be



6 Roland Weiss and Uwe Kreppel

chosen from a set of types. Thus, it describes a family of functions. A function
specialization restricts these types to a special subset. Specializations can also
be declared for special values of its input parameters, projections in a recursion-
theoretical sense. The specialized functions still compute the same generic func-
tion, but for a limited set of parameters. Every function must have at least
one algorithm implementation, i.e. an intrinsic algorithmic solution. Producing
code for a fixed set of parameter types and values of a generic function is called
instantiation. Algorithm selection is the process of selecting one algorithm imple-
mentation among possible candidates. We refer to instantiation combined with
algorithm selection as runtime instantiation.

In C++ and Ada95, a generic function can have only one implementation.
But out of performance considerations, a generic function can have different
specializations. We want to go one step further. For a given function specification,
our system accepts more than one intrinsic algorithmic solution®. Whenever the
user calls such a function, the system’s task consists of choosing the fastest
algorithm out of a pool of algorithms, considering the current context. This duty
is left to the programmer in current languages. Since we have all the information
at hand provided by the XGILF file and runtime profiling data, we perform
runtime instantiation, one of the main benefits of our approach. This leads to a
system composed of a huge set of more or less specialized functions, providing on
the one hand the possibility of having a fast version of the function instantiated.
On the other hand, the algorithm selection is totally transparent to the library
user.

It is also of great importance that the characteristics at the machine level
have an effect on the algorithm implementation. Our field of special interest is
computer algebra, where algorithms can run for days and switching between
one function’s different algorithm implementations at the appropriate trade-off
points can have a deep impact on its runtime, e.g. using machine addition for
numbers that fit into a few machine words and addition for numbers of arbitrary
precision (see [39] and [18]) otherwise.

But let us have a closer look at the well known sorting algorithms. Depending
on the type of a container whose elements should be sorted, it is reasonable to
choose a different sorting algorithm, like quicksort for arrays and mergesort for
linked lists and files. The generic sort function in the STL requires random
access iterators and thus cannot be used with lists. This is a very clumsy way to
handle this algorithm selection problem. Code that uses the sort function cannot
deal with lists, because they have to be sorted with a member function, which
has different syntax. Our system will select the appropriate algorithm based on
realtime profiling data, which means an effective resolving of the genericity. This
can happen at runtime, resulting in runtime instantiation of generic functions.

Not only the type of the container is a viable criterion for the algorithm
selection, also the container’s attributes like its elements’ values and its size can
help to choose a better algorithm. Since quicksort’s complexity degenerates to
O(n?) for certain input sequences, it would be better to apply another sorting

8 Of course, also a specialization can have different implementations.



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries 7

algorithm right from the start, if a frequent pattern in the sequence of elements
stored inside a container could be determined. Of course, not only containers, but
all other types, their values and additional parameters, like the length of a list
or the degree of a polynomial, can expose significant information for algorithm
selection. Even some well known findings from static complexity analysis or
some previously developed heuristics can be useful. David Musser introduced
introsort [31], a sorting algorithm based on quicksort that switches to heapsort
if a certain recursion depth is reached while partitioning. This effectively protects
against running into worst case. He uses a depth limit of O(log n), where n is
the length of the input. Knowing this limit while implementing quicksort should
enable us to switch to another sorting algorithm without having to implement
introsort explicitly. Therefore, we need the help of a runtime profiler. It counts
the recursion depth whenever an online optimizer requests this service. If the
counter reaches its limit, the optimizer selects another sorting algorithm with
guaranteed O(n log n) complexity to replace quicksort at runtime.

5 Enabling Effective Algorithm Selection

Obviously, the algorithm selection unit (ASU) itself, which comprises the selec-
tion algorithm, is one of the most important components in our system. The
ASU retrieves data from the algorithmic database (ADB) and interpolates it.
Compared to an offline algorithm selection procedure by the library desinger
or user, it has to perform definitely better. To gain usable predictions we just
cannot rely on static analysis, even if it is combined with runtime data. This
situation is much alike the one analyzed in [38] where David Wall shows that
estimated profiles are significantly worse than using real profiles to predict pro-
gram behavior. To meet this observation, we use a runtime profiler to measure
the exact executing time of the selected algorithm and store it in a database.

The algorithmic database is designed to be another central component. For
each function specification, it holds the realizing algorithm names and their
characteristics, which we need for making the selection. These are precomputed
execution time?, data from the runtime profiler, and known worst case indicators,
to mention just a few.

For the ASU, initial data has to be provided to base the selection on. There
are several methods considered how to collect these data. The ideal method
would be to have for each algorithm an analytic computing time function of all
its input complexity parameters. Such a function would be completely deter-
mined by a small set of constants depending on the environment, i.e. platform
and compiler. These constants would have to be measured for each new envi-
ronment while the analytic computing time functions would be the same. The
other extreme would be, having no analytical time complexity term at all. In this

9 While building an XGILF library, the execution times for some representative input
parameters will be precomputed on user demand. So we get a first insight into the
location of trade-off points and we get first data to use for runtime prediction through
interpolation.



8 Roland Weiss and Uwe Kreppel

case test sets are needed for the complete range of expected applications of the
algorithms. For each new environment these test sets must be used to determine
the computing time functions empirically.

Between these two extreme cases — analytic and empircal computing time
functions — intermediate ways of retrieving computing time functions are pos-
sible. For example, one could have analytical knowledge about the asymptotic
computing times and empirical found knowledge for smaller input data. In this
case one could try to regain the constants suppressed in the asymptotic analy-
sis and supply the low order terms in order to get an analytic function for the
whole range of inputs. For example, the asymptotic term O(n log n) would be
expanded to (a1n+ap) (b1 log n+bo) = a1by n log n+aiby n+ agby log n+ apby,
and one can then apply the analytic method.

In other cases this approach is of little help because the computing time may
depend on properties of the input which are hard to formalize. For example,
sorting permutations of a fixed length n, the time may depend on the actual
permutation of the elements or how close it is to be sorted. In these cases we
compute the average execution time or use moments of higher order to base our
decisions on. Since the prediction of execution times based on measurements is
only really reliable if the input data does not change, we need some techniques
of interpolation and extrapolation or other assumptions about the computing
time function to cope with varying input data.

After using our system intensivly for some time, the ADB contains a lot of
execution time data. As more data becomes available, the ASU can predict more
exactly which algorithm will perform best. Hence, our profile-driven optimizing
architecture improves the more it is used. Passing over to another architecture
need not result in loosing all data stored in the ADB so far, if we transform it
according to the methods discussed.

The whole architecture is based upon components. Due to the modular de-
sign, we can adapt the whole system to conform to the underlying hardware
as well as to special needs of the running aplication. For example, we can re-
place a component in case of having found some better fitting selection criteria
(replacing part of the selection unit) or when hardware changes so that other
hardware performance counters will be provided (replacing part of the profiler).
A new component may be added if a useful automatic complexity analyser will
be available [9].

Concluding this section, we summarize the interaction of the components
building our optimization system. We have a clear distinction between the static
and the dynamic part of the optimizing process. In the static part, we record
the complexity analysis of algorithms and their empirically found worst case
indicators. This data and the source code are the input of the compiler front-end.
On demand, timings of the new algorithms are precomputed after generating the
IR.

The three major components of the dynamic part are the ADB, the ASU
(part of the online optimizer) and the runtime profiler. The code generator
queries the ASU for algorithms while compiling a function inside an XGILF file.



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries 9

Then the ASU interacts with the ADB to perform several checks on the requested
function (availability, uniqueness), keeps the ADB up to date and finally gets a
list of all available algorithms realizing the function, together with their timings.
Based on this results, the ASU selects the appropriate algorithm and sends its
result back to the code generator. It also instructs the code generator where and
what kind of profiling code should be inserted.

The profiler is constantly fed with live data from the executing program in
order to detect time critical sections. If a worst case indicator is available and the
profiler is instructed to watch this counter, it sends a message to the optimizer
on overrun. The optimizer tries to enhance the critical sections. At the highest
abstraction level, this means to select the most efficient algorithm instantiation
for the current and maybe future parameters, i.e. the ASU selects the best fall-
back algorithm and orders the code generator to exchange the algorithms. After
an alogrithm has finished, the profiler sends its data to the ASU which updates
its interpolation process and sends the new data to the ADB. Figure 3 shows
the complete XGILF runtime system, including the components discussed in this

section.
XGILF ASU ADB
linker

code executing runtime
generator program profiler

Figure3. The complete XGILF runtime system.

We did not mention two other integral parts of our runtime system, the
garbage collector and the debugger. They will be covered separately as they
represent independent components which have no direct influence on our con-
clusions described here. Also, the idea how the ASU is working and interacting
with the ADB is only sketched here.

6 Implementation Context and State

Finally, we want to mention the context in which we are applying our frame-
work XGILF. In order to be more than just a kind of type safe macro mech-
anism, generic languages must provide constructs to constrain the instantia-
tion of generic concepts. This is not the case in a sophisticated way for todays
generic languages, but common in the context of specification languages. There-
fore SUCHTHAT, our idea of a generic programming language, consists of an
imperative and a declarative part, combining both side’s advantages. Sibylle



10 Roland Weiss and Uwe Kreppel

Schupp details the imperative part in her dissertation [34]. The declarative part
consists of a revised version of Tecton [30], which was developed mainly by David
Musser.

A goal of our project is to implement a generic algebraic library, which takes
its main algorithms from the SAC-2 system [7] and the saclib [21]. We want
to lift the concrete algorithms to a generic form, e.g. there are 19 summation
algorithms in the SAC-2 system.

An implementation of the specification and the type system checker by Riidi-
ger Loos is in a stable state for a while now. Main work is currently poured into
getting the code generator to work. We use the XML parser Xerces C++ from
the Apache XML project (see xml.apache.org) and produce standard C++
code right now.

7 Related Work

During the evaluation of contemporary programming languages that support the
generic paradigm, we concentrated on C++ and Ada95, because they are the
languages that have a significant user community and provide sufficient support
for generic programming. However, C++ gains extraordinary attention because
it was the first language in which Alexander Stepanov could implement his vision
of a generic component and algorithm library [35]. See [13] for an implementation
of the STL in Ada95 and a good comparison of the generic features present in
C++ and Ada95.

C-- [33] and MLRISC [17] are both portable, abstract low level IRs that were
introduced in order to provide a common front-end target language that can be
easily retargeted for different processors. The National Compiler Infrastructure
(NCI) is a major effort to streamline the construction of high quality research
compilers. One of its contributions is ASDL [20], a domain-specific language for
describing tree data structures. They recently extended their tools to use XML
as storage format. SUIF [23] is another part of the NCI, an IR together with
an API developed for high level optimizations. It is augmented by the Zephyr
Infrastructure [4], which provides a low level optimizer. We consider reusing parts
of the tools adaptable for our project. All these formats have in common that
they were designed with a traditional compiler in mind. Java Bytecode [29] and
Clarity MCode [28] are both developed for on-the-fly compilation and come very
close to our needs. Unfortunately, they lack support for generic programming as
they assume a fixed set of types.

There are two IRs that are very similar to XGILF in design, namely TDF
[10] and SDE [15]. TDF is intended as abstraction of programming languages, in
contrast to abstractions from target architectures like C-- and MLRISC. SDE,
now integrated into the Oberon-3 system as slim binaries [16] by Michael Franz,
was one of the main motivators for our system. We differ from their design in
that we support generic concepts in our library, we have a textual instead of a
binary representation and our optimizations apply at a higher level. Our current
focus is on optimizing at the algorithm level, while they try to gain speedups



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries 11

by exploiting intermodular information, by reordering data members in memory
and by optimizing instruction scheduling [24].

Dynamic optimizations and compilation have received some interest in the
recent years. Mary Ferndndez [14] showed how to remove some overhead stem-
ming from Modula’s opaque type by deferring code generation to link time. At
the University of Washington DyC [19], a C compiler, is being developed that
allows dynamic code generation by annotating the C source code. Comparable
approaches are being investigated at the MIT in the group around Dawson En-
gler and Frans Kaashoek and in the group of Charles Consel at INRIA. The
MIT group extends C with special constructs for dynamic code generation, the
language is called "C [12]. It now employs a fast code generating back-end called
VCODE [11]. Tempo is the compiler from INRIA [8], it also annotates C source
code but is based on the GNU C compiler gcc and also does extensive code anal-
ysis to automate dynamic code generation. Finally, Mark Leone and Peter Lee
worked on dynamic compilation for functional languages like ML [25]. They in-
dicated possible optimization candidates with special functional constructs like
curried functions [27]. Their work is continued in the Dynamo project [26]. At
Sun, the Java team utilizes similar optimization techniques in the HotSpot en-
gine [37] to improve the performance of Java applications. The Jalapefio group
at IBM is building a Java system for SMP server machines that uses a dynamic
compiler [6].

8 Conclusions

We presented a conceptual frame for a compiler and operating system infras-
tructure that efficiently supports generic programming. It overcomes implemen-
tation problems idiosyncratic to contemporary generic languages. Furthermore,
we sketched a runtime systems which enables transparent runtime instantiation
of generic functions. Transparent algorithm selection takes into account the often
discrepant level of expertise on the side of the library developer and the library
user.

Our main interest now is to gather hard data about our implementation and
prove its viability. We also want to provide a binary version of our format and
compare the perfomance impact of this solution to our XML version.

References

1. AMD: 8DNow! Technology Manual, Order Number 21928, Advanced Micro De-
vices, Inc., 1999.

2. ANSI/ISO Standard: Programming languages - C++, ISO/TEC 14882, 1998.

3. Andrew W. Appel: Modern Compiler Implementation in ML, Cambridge Univer-
sity Press, 1998.

4. Andrew W. Appel, Jack Davidson, Norman Ramsey: The Zephyr Compiler In-
frastructure, available at www.cs.virginia.edu/zephyr/papers.html, 1998.



12

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Roland Weiss and Uwe Kreppel

Tim Bray, Jean Paoli and C. M. Sperberg-McQueen (editors): Eztensible Markup
Language (XML) 1.0, W3C Recommendation, W3C XML Activity, 10-February-
1998.

Michael G. Burke, et al: The Jalaperio Dynamic Optimizing Compilert for Java,
Proceedings of the ACM 1999 Conference on Java Grande: 129-141, 1999.
George E. Collins, Ridiger G. K. Loos: Specifications and Index of SAC-2 Algo-
rithms, Technical Report WSI 90-4, Wilhelm-Schickard-Institut fiir Informatik,
Universitat Tiibingen, 1990.

Charles Consel, Frangois Noél: A General Approach for Run-Time Specialization
and its Application to C, Proceedings of ACM POPL’96: 145-156, 1996.

Vincent Dornic, Pierre Jouvelot, David K. Gifford: Polymorphic Time Systems
for Estimating Program Complexity, ACM Letters on Programming Languages
and Systems 1(1): 22-45, March 1992.

DRA: TDF Specification, Issue 4.0, Defence Research Agency, Malvern, UK, 1998.
Dawson R. Engler: VCODE: A Retargetable, Extensible, Very Fast Dynamic Code
Generation System, Proceedings of PLDI'96, ACM SIGPLAN Notices 31(5): 160-
170, 1996.

Dawson R. Engler, Wilson C. Hsieh, Frans Kaashoek: 'C: A Language for High-
Level, Efficient, and Machine-Independent Dynamic Code Generation, Conference
Record of the ACM POPL’95: 131-144, 1995.

Ulfar Erlingsson, Alexander V. Konstantinou: Implementing the C++ Standard
Template Library in Ada 95, Technical Report, Computer Science Department,
Rensselaer Polytechnic Institute, 1996.

Mary F. Ferndndez: Simple and Effective Link-Time Optimization of Modula-
3 Programs, Proceedings of PLDI'95, ACM SIGPLAN Notices 30(6): 103-115,
1995.

Michael Franz: Code-Generation On-the-Fly: A Key to Portable Software, Doc-
toral Dissertation, Verlag der Fachvereine, Ziirich, 1994.

Michael Franz, Thomas Kistler: Slim Binaries, Department of Information and
Computer Science, Technical Report TR 96-24, University of California, Irvine,
1996.

Lal George, Allen Leung: MLRISC — A framework for retargetable and opti-
mizing compiler back ends, described and available on the WWW at cm.bell-
labs.com/cm/cs/what /smlnj/doc/MLRISC/.

Torbjorn Granlund: GNU MP - The GNU Multiple Precision Arithmetic Library,
Edition 2.0.2, Free Software Foundation, 1996.

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, Susan J. Eg-
gers: DyC: An Expressive Annotation-Directed Dynamic Compiler for C, Techni-
cal Report UW-CSE-97-03-03, Department of Computer Science and Engineering,
University of Washington, 1999.

David R. Hanson: Farly Ezperience with ASDL in lcc, Software — Practice and
Experience, 29(5): 417-435, John Wiley & Sons, Inc., 1999.

Hoon Hong, Andreas Neubacher, Wolfgang Schreiner: The Design of the
SACLIB/PACLIB Kernels, Journal of Symbolic Computation 19(1-3): 111-132,
1995.

Intel: Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference, Order Number 243191, Intel Corporation, 1999.

Holger Kienle, Urs Holzle: Introduction to the SUIF 2.0 Compiler System, Tech-
nical Report TRCS97-22, Department of Computer Science, University of Cali-
fornia, Santa Barbara, 1997.



XGILF — A Conceptual Frame for Compiling and Linking Generic Libraries 13

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Thomas Kistler: Continuous Program Optimization, Doctoral Dissertation, Uni-
versity of California, Irvine, 1999.

Peter Lee, Mark Leone: Optimizing ML with Run-Time Code Generation, Pro-
ceedings of the ACM SIGPLAN PLDI'97: 137-148, 1997.

Mark Leone, R. Kent Dybvig: Dynamo: A Staged Compiler Architecture for Dy-
namic Program Optimization, Technical Report 490, Computer Science Depart-
ment, Indiana University, 1997.

Mark Leone, Peter Lee: Lightweight Run-Time Code Generation, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation: 97-104, 1994.

Brian T. Lewis, L. Peter Deutsch, Theodore C. Goldstein: Clarity MCode: A
Retargetable Intermediate Representation for Compilation, Technical Report TR-
95-43, Sun Microsystems Laboratories, Inc., 1995.

Tim Lindholm, Frank Yellin: The Java Virtual Machine Specification, Second
Edition, The Java Series, Addison-Wesley Publishing Company, 1999.

D. Kapur, David R. Musser: Tecton: a framework for specifying and verifying
generic system components, Technical Report 92-20, Computer Science Depart-
ment, Rensselaer Polytechnic Institute, 1992.

David R. Musser: Introspective Sorting and Selection Algorithms, Software — Prac-
tice and Experience, 27(8): 983-993, John Wiley & Sons, Inc., 1997.

David R. Musser, Atul Saini: STL Tutorial and Reference Guide, Addison-Wesley
Publishing Company, 1996.

Simon Peyton Jones, Norman Ramsey, Fermin Reig: C--: a portable assembly
language that supports garbage collection, Invited Talk, PPDP’99.

Sibylle Schupp: Generic programming — SuchThat one can build an alge-
braic library, Ph.D. thesis, Wilhelm-Schickard-Institut fiir Informatik, Universitét
Tibingen, 1996.

Alexander Stepanov, Meng Lee: The Standard Template Library, Technical Report
HPL-94-34, Hewlett-Packard Company, April 1994, revised October 1995.
Bjarne Stroustrup: The Design and Evolution of C++, Addison-Wesley Publish-
ing Company, 1994.

Sun Microsystems: The Java HotSpot Perfromance Engine Architecture, Whitepa-
per, Sun Microsystems, Inc., 1999.

David W. Wall, Predicting Program Behavior Using Real or Estimated Profiles,
ACM SIGPLAN Notices 26(6): 59-70, June 1991.

Sebastian Wedeniwski: Piologie — Eine exakte arithmetische Bibliothek in C++,
Technical Report WSI 96-35, Wilhelm-Schickard-Institut fiir Informatik, Univer-
sitat Tiibingen, 1996.



	XGILF -- A Conceptual Frame for Compiling and Linking Generic Libraries
	1 Introduction
	2 The Intermediate Representation XGILF
	3 The Infrastructure of a System Based on XGILF
	4 New Optimization Opportunities
	5 Enabling Effective Algorithm Selection
	6 Implementation Context and State
	7 Related Work
	8 Conclusions


