
Reuse in the
Software Development Process

Roland J. Weiss
06/06/2003



What is Software Reuse?

§ Definition: Software Reuse is the process of 
creating software systems from predefined 
software components.

§ Systematic reuse requires a repeatable 
development process tailored towards reuse.
§ Ad Hoc reuse exploits arbitrary reusable 

software artifacts during development.



Why Reuse?

1. Quality: Reusing tested, revised components 
avoids repeating errors and harvests existing 
knowledge and experience.

2. Speed: Minimize time-to-market for software, 
components speed up development. 

3. Costs: Updating components effects whole 
application families (maintenance), reduced 
creation time lowers development costs.



What to Reuse?

Components

Designs/Design Patterns

Architectures

Modules

Domain models

Sets of requirements

Documentation
(styles, templates, …)

Test sets and frameworks
Standard Software



Software Components & Assets

§ Component: Source or object code that 
provides a special service through a public 
interface.
§ The interface consists of provided operations and 

requirements for proper functioning.
§ Examples: ActiveX, JavaBeans, CORBA, STL.

§ Asset: Software artifact that is deliberately 
designed for reuse.



The Two Dimensions of Reuse

1. Software Engineering Dimension
§ Evaluate and select relevant technologies (component 

model, tools, languages/language constructs etc.) 
§ Integrate reuse into software development processes
§ Identify and develop reusable components and create 

systems with them

2. Business Engineering Dimension
§ Provide funding and long-term commitment
§ Establish necessary infrastructure
§ Coordination of reuse effort across business units and 

projects
§ Measure reuse success



Business EngineeringBusiness Engineering



Reuse is Special

§ Changes to organizational structures required
§ Special component development and support group(s) required
§ Coordination of reuse efforts essential

§ Changes to established development processes required
§ Domain engineering
§ Evaluation of component library, selection of appropriate components

§ Reuse works best when applied across projects, business 
units, or even organizations
§ Greater benefit due to increased reuse opportunities
§ Larger basis for domain engineering



Traditional vs. Reuse
Business Organization

ó



Establishing Reuse

§ Initial investments necessary
§ Establish organizational and process changes
§ Develop component repository/library

§ Investments begin to recover after 2-5 years
§ Faster application development, …

è Consensus: Reuse can only succeed with dedicated 
management support.

§ Favored approach: Incremental transition
§ Initiate reuse with pilot project with great reuse potential
§ Extend reuse program to other business units
§ Classical Paper: R. Joos, Software Reuse at Motorola (1994)



Software EngineeringSoftware Engineering



Two Major Activities

1. Application/System Engineering
§ Create sets of related applications (families) 

based on reusable components

2. Domain Engineering
§ Detect commonalities and variabilities to create 

domain model
§ Develop reusable software artifacts 

(components, generators)



Two Life Cycle Model

Domain 
Model

Domain 
Analysis

Domain
Architecture

Design
Architecture

Reusable
Software
Assets

Component/
Generator

Development

Application
Specification

Requirements
Analysis

System
Architecture

Design
System

Software
System

System
Development

Domain Engineering

Customer
Requirements

Application Engineering

§ Correlates life cycles of domain and application engineering
§ Domain and application engineers have to communicate



Domain Engineering

1. Domain analysis
§ Domain scoping (identification, description)
§ Domain modeling (definition, lexicon, feature and concept models)

2. Domain design
§ Develop architecture (decomposition of a system’s elements, their 

relations and constraints)
§ Devise production plan (assembly of concrete system; integrating

change requests, measuring the production process)

3. Domain implementation

è Czarnecki/Eisenecker: Generative Programming (2000)



Domain Analysis

§ Bottom-Up Domain Analysis
§ Examine existing applications
§ Identify reusable components according to commonalities and 

variabilities
§ Example: AT&T reuse effort

§ Top-Down Domain Analysis
§ Develop enterprise models
§ Detect overlap and future trends
§ Which parts should be created from reusable components, which 

should be added to the component repository

§ Combine both approaches
§ DA goes beyond recording existing domain expertise
§ Formalized DA methods: FODA, ODM



OO Technology and Reuse

§ OOD/A traditionally focused on creating 
single applications

§ Objects not well suited for reuse without 
additional efforts

§ Advanced techniques
1. Frameworks: Implementation skeletons for 

related applications
2. Design Patterns: Capture expert knowledge for 

common design problems



Policy Based Programming

§ Design Patterns demanding for users: Understand & 
Implement

§ Approach: Generate custom pattern implementations from 
pattern templates

1. Pattern templates are implemented in terms of policies
2. Policies capture various design decisions inherent to the 

pattern, e.g. allocation strategy, threading policy
3. Default policies implement established solutions, user can 

provide custom policies

è A. Alexandrescu: Modern C++ Design (2001)



Summary & Conclusions

§ Reuse requires changes to business and 
software engineering processes

§ Reuse relies on cooperation and trust:
New enterprise culture necessary

§ Reuse offers great potential, but holds serious 
risks if implemented inappropriately


