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Abstract The generic programming paradigm has exerted great influ-
ence on the recent development of C++, e.g., large parts of its standard
library [2] are based on generic containers and algorithms. While tem-
plates, the language feature of C++ that supports generic programming,
have become widely used and well understood in the last years, one as-
pect of templates has been mostly ignored: template template param-
eters ([2], 14.1). In the first part, this article will present an in depth
introduction of the new technique. The second part introduces a class
for arbitrary precision arithmetic, whose design is based on template
template parameters. Finally, we end with a discussion of the benefits
and drawbacks of this new programming technique and how it applies to
generic languages other than C++.


1 Introduction


The C++ standard library incorporated the standard template library (STL)
[15] and its ideas, which are the cornerstones of generic programming [14]. Tem-
plates are the language feature that supports generic programming in C++.
They come in two flavors, class templates and function templates. Class tem-
plates are used to express classes parameterized with types, e.g., the standard
library containers, which hold elements of the argument type. Generic algorithms
can be expressed with function templates. They allow one to formulate an al-
gorithm independently of concrete types, such that the algorithm is applicable
to a range of types complying to specific requirements. For example, the stan-
dard sort algorithm without function object ([2], 25.3) is able to rearrange a
sequence of arbitrary type according to the order implied by the comparison
operator <. Of course, the availability of this operator is a requirement on the
elements’ type.


It is possible to use instantiated class templates as arguments for class and
function templates, therefore one is able to write nested constructs like vec-


tor<list<long> > . So where does the need for template template parameters
arise? Templates give one the power to abstract from an implementation detail,
the types of the application’s local data. Template template parameters provide
one with the means to introduce an additional level of abstraction. Instead of
using an instantiated class template as argument, the class template itself can
be used as template argument. To clarify the meaning of this statement, we will







look in the following sections at class and function templates that take template
template parameters. Then we will present a generic arbitrary precision arith-
metic implemented with template template parameters. Finally, the presented
technique is discussed and effects on other generic languages are considered.


2 Class Templates


The standard library offers three sequence containers, vector , list and deque .
They all have characteristics that recommend them for a given application con-
text. But if one wants to write a new class called store that uses a standard
container internally to store values, it is hard to choose the perfect container for
all possible scenarios. This is exactly the situation where template template pa-
rameters fit in. The class designer can provide a default container, but the user
can override this decision easily. Note that the user can not only use standard
containers but also any proprietary container that conforms to the standard se-
quence container interface. Let us look at a code example that implements the
class store comp using object composition.
template < typename val t,


template <typename T, typename A> class cont t = std::deque,


typename alloc t = std::allocator<val t> >


class store comp


{


cont t<val t, alloc t> m cont; // instantiate template template parameter


public :


typedef typename cont t<val t, alloc t<val t> >::iterator iterator;


iterator begin() { return mcont.begin(); }


// more delegated methods...


};


The first template parameter val t is the type of the objects to be kept inside
the store. cont t , the second one, is the template template parameter, which
we are interested in. The declaration states that cont t expects two template
parameters T and A, therefore any standard conforming sequence container is ap-
plicable. We also provide a default value for the template template parameter,
the standard container deque . When working with template template param-
eters, one has to get used to the fact that one provides a real class template
as template argument, not an instantiation. The container’s allocator alloc t


defaults to the standard allocator.
There is nothing unusual about the usage of cont t , the private member


mcont is an instantiation of the default or user provided sequence container.
As already mentioned, this implementation of store comp applies composition
to express the relationship between the new class and the internally used con-
tainer. Another way to reach the same goal is to use inheritance, as shown in
the following code segment:
template <typename val t, ...>


class store inh : public cont t<val t, alloc t<val t> > {};







The template header is the same as in the previous example. Due to the public
inheritance, the user can work with the container’s typical interface to change the
store’s content. For the class store comp, appropriate member functions must be
written, which delegate the actual work to the private member mcont . The two
differing designs of class store are summarized in Figure 1. The notation follows
the diagrams in [9]. The only extension is that template template parameters
inside the class’ parameter list are typeset in boldface.


store_comp


-m_cont
+begin(), +end()
...


store_inh
val_t, cont_t, alloc_t


container_t
val_t, alloc_t


container_t
val_t, alloc_t val_t, cont_t, alloc_t


Figure1. Comparison of the competing designs of the store classes.


To conclude the overview, these code lines show how to create instances of the
store classes:
store comp<std::string, std::list> sc;


store inh< int > si;


sc uses a std::list as internal container, whereas si uses the default container
std::deque . This is a very convenient way for the user to select the appropriate
container that matches the needs in his application area. The template template
parameter can be seen as a container policy [1].


Now that we have seen how to apply template template parameters to a
parameterized class in general, let us examine some of the subtleties.


First, the template template parameter – cont t in our case – must be intro-
duced with the keyword class , typename is not allowed ([2], 14.1). This makes
sense, since a template template argument must correspond to a class template,
not just a simple type name.


Also, the identifiers T and A introduced in the parameter list of the template
template parameter are only valid inside its own declaration. Effectively, this
means that they are not available inside the scope of the class store . One can
instantiate the template template parameter inside the class body with differ-
ent arguments multiple times, which would render the identifier(s) ambiguous.
Hence, this scoping rule is reasonable.


But the most important point is the number of parameters of the template
template parameter itself. Some of you may have wondered why two type pa-
rameters are given for a standard container, because they are almost exclusively
instantiated with just the element type as argument, e.g., std::deque<float> .







In these cases, the allocator parameter defaults to the standard allocator. Why
do we have to declare it for cont t ? The answer is obvious: the template pa-
rameter signatures of the following two class templates C1 and C2 are distinct,
though some of their instantiations can look the same:
template <typename T> class C1 {};


template <typename T1, typename T2 = int > class C2 {};


C1<double > c1; // c1 has signature C1<double>


C2<double > c2; // c2 has signature C2<double, int>


In order to be able to use standard containers, we have to declare cont t con-
forming to the standard library. There ([2], 23.2), all sequence containers have
two template parameters.1 This can have some unexpected consequences. Think
of a library implementor who decides to add another default parameter to a
sequence container. Normal usage of this container is not affected by this imple-
mentation detail, but the class store can not be instantiated with this container
because of the differing number of template parameters. We have encountered
this particular problem with the deque implementation of the SGI STL [23].2


Please note that some of the compilers that currently support template template
parameters fail to check the number of arguments given to a template template
parameter instantiation.


The template parameters of a template template parameter can have default
arguments themselves. For example, if one is not interested in parameterizing
a container by its allocator, one can provide the standard allocator as default
argument and instantiate the container with just the contained type.


Finally, we will compare the approach with template template parameters
to the traditional one using class arguments with template parameters. Such a
class would look more or less like this:
template <typename cont t>


class store t


{


cont t m cont; // use instantiated container for internal representation


public :


typedef typename cont t::iterator iterator; // iterator type


typedef typename cont t::value type value type; // value type


typedef typename cont t::allocator type allocator type; // alloc type


// rest analogous to store comp ...


};


typedef std::list< int > my cont; // container for internal representation


store t<my cont> st; // instantiate store


We will examine the advantages and drawbacks of each approach. The traditional
one provides an instantiated class template as template argument. Therefore,
store t can extract all necessary types like the allocator, iterator etc. This is
not possible in classes with template template parameters, because they perform
the instantiation of the internal container themselves.


1 The C++ Standardization Committee currently discusses if this a defect, inade-
quately restricting library writers.


2 The additional third template parameter was removed recently.







But the traditional approach was made applicable at all by the fact that the
user provides the type with which the sequence container is instantiated. If the
type is an implementation detail not made explicit to the user, the traditional
approach doesn’t work. See [21] for an application example with these properties.
The ability to create multiple, different instantiations inside the class template
body using the template template argument is also beyond the traditional ap-
proach:
cont t< int , alloc t> cont 1;


cont t<val t, std::allocator<val t> > cont 2;


3 Function Templates


In the preceding section we showed that by application of template template
parameters we gain flexibility in building data structures on top of existing STL
container class templates. Now we want to examine what kind of abstractions are
possible for generic functions with template template parameters. Of course, one
can still use template template parameters to specify a class template for internal
usage. This is analogous to the class store comp, where object composition is
employed.


But let us try to apply a corresponding abstraction to generic functions as
we did to generic containers. We were able to give class users a convenient way
to customize a complex data structure according to their application contexts.
Transferring this abstraction to generic functions, we want to provide functions
whose behavior is modifiable by their template template arguments.


We will exemplify this by adding a new method view to the class store .
Its purpose is to print the store’s content in a customizable way. A bare bones
implementation inside a class definition is presented here:
template <template <typename iter t> class mutator>


void view(std::ostream& os)


{


mutator<iterator>()(begin(),end()); // iterator: defined in the store


std::copy(begin(), end(), std::ostream iterator<val t>(os, " " ));


}


Here, mutator is the template template parameter, it has an iterator type as
template parameter. The mutator changes the order of the elements that are
delimited by the two iterator arguments and then prints the changed sequence.
This behavior is expressed in the two code lines inside the method body. The first
line instantiates the mutator with the store’s iterator and invokes the mutator ’s
application operator, where the elements are rearranged. In the second line, the
mutated store is written to the given output stream os , using the algorithm
copy from the standard library. The types iterator and val t are defined in
the store class.


The first noteworthy point is that we have to get around an inherent problem
of C++: functions are not first order objects. Fortunately, the same workaround
already applied to this problem in the STL works fine. The solution is to use







function objects (see [15], chapter 8). In the view method above, a function
object that takes two iterators as arguments is required.


The following example shows how to write a function object that encapsulates
the random shuffle standard algorithm and how to call view with this function
object as the mutator :
// function object that encapsulates std::random shuffle


template <typename iter t>


struct RandomShuffle


{


void operator ()(iter t i1, iter t i2) { std::random shuffle(i1, i2); }


};


// A store s must be created and filled with values...


s.view<RandomShuffle>(cout); // RandomShuffle is the mutator


There are two requirements on the template arguments such that the presented
technique works properly. First, the application operator provided by the func-
tion object, e.g., RandomShuffle , must match the usage inside the instantiated
class template, e.g., store comp. The view method works fine with applica-
tion operators that expect two iterators as input arguments, like the wrapped
random shuffle algorithm from the standard library.


The second requirement touches the generic concepts on which the STL is
built. RandomShuffle wraps the random shuffle algorithm, which is specified
to work with random access iterators. But what happens if one instantiates the
store class template with std::list as template template argument and calls
view<RandomShuffle> ? std::list supports only bidirectional iterators, there-
fore the C++ compiler must fail instantiating view<RandomShuffle> . If one is
interested in a function object that is usable with all possible store instantia-
tions, two possibilities exist. Either we write a general algorithm and demand
only the weakest iterator category, possibly loosing efficiency. Or we apply a
technique already used in the standard library. The function object can have
different specializations, which dispatch to the most efficient algorithm based
on the iterator category. See [4] for a good discussion of this approach. This
point, involving iterator and container categories as well as algorithm require-
ments, emphasizes the position of Musser et. al. [16] that generic programming
is requirement oriented programming.


Completing, we want to explain why template template parameters are nec-
essary for the view function and simple template parameters won’t suffice. The
key point is that the mutator can only be instantiated with the correct iterator.
But the iterator is only know to the store , therefore an instantiation outside
the class template store is not possible, at least not in a consistent manner.


Overall, the presented technique gives a class or library designer a versatile
tool to make functions customizable by the user.


4 Long Integer Arithmetic – An Application Example


Now we will show how the techniques introduced in the last two sections can
be applied to a real world problem. Suppose you want to implement a library







for arbitrary precision arithmetic. One of the main problems one encounters
is the question of how to represent long numbers. There are many well known
possibilities to choose from: arrays, single linked lists, double linked lists, garbage
collected or dynamically allocated and freed storage and so on. It is hard to make
the right decision at the beginning of the project, especially because our decision
will influence the way we have to implement the algorithms working on long
numbers. Furthermore, we might not even know in advance all the algorithms
that we eventually want to implement in the future.


The better way to go is to leave this decision open and parameterize the long
number class by the container, which holds the digits. We just specify a minimal
interface where every long number is a sequence of digits, and the digits of every
sequence have to be accessible through iterators. With this in mind, we can
define our long number class as follows:
template <


template <typename T, typename A> class cont t = std::vector,


template <typename AllocT> class alloc t = std::allocator


>


class Integer {


// ..


};


The first template template parameter stands for an arbitrary container type,
which fulfills the requirements of a STL container. As we do not want to leave the
memory management completely in the container’s responsibility, we use a sec-
ond template template parameter, which has the same interface as the standard
allocator. Both template template parameters have default parameters, namely
the standard vector class std::vector for the container and the standard allo-
cator std::allocator for the allocator.


Knowing only this interface, a user could create Integer instances, which
use different containers and allocators to manage a long number’s digits. He even
does not have to know if we use composition or inheritance in our implementation
(see Figure 1 for a summary of the two design paradigms).3


In order to give the user access to the long number’s digits, we implement the
methods begin() , end() and push back() , which are merely wrappers to the
very same methods of the parameterized container. The first two return iterators
that give access to the actual digits while the last one can be used to append a
digit at the end of the long number. Notice that the type of a digit is treated as
an implementation detail. We only have to make it available by defining a public
type called digit type in our class. Also we hand over in this way the type
definitions of the iterators of the underlying containers. Now, our augmented
class looks as follows (with the template definition omitted):


3 We used composition in our implementation. The main reason was that we wanted to
minimize the tradeoff between long numbers consisting of just one digit and real long
numbers. Therefore, our Integer class is in fact a kind of union or variant record
in Pascal notation of either a pointer to the parameterized container or a plain digit.
The source code of our implementation is available at http://www-ca.informatik.uni-
tuebingen.de/people/simonis/projects.htm.







class Integer {


public :


typedef int digit type;


typedef typename cont t::iterator iterator;


iterator begin() { return cont->begin(); }


iterator end() { return cont->end(); }


void push back(digit type v) { cont->push back(v); }


private :


cont t<digit type, alloc t> *cont;


};


With this in mind and provided addition is defined for the digit type, a user
may implement a naive addition without carry for long numbers of equal length
in the following way (again the template definition has been omitted):
Integer<cont t, alloc t>


add(Integer<cont t, alloc t> &a, Integer<cont t, alloc t> &b) {


Integer<cont t, alloc t> result;


typename Integer<cont t, alloc t>::iterator ia=a.begin(), ib=b.begin();


while (ia != a.end()) result.push back(*ia + *ib);)


return result;


}


Based on the technique of iterator traits described in [5] and the proposed con-
tainer traits in [4] specialized versions of certain algorithms may be written,
which make use of the specific features of the underlying container. For ex-
ample, an algorithm working on vectors can take advantage of random access
iterators, while at the same time being aware of the fact that insert operations
are linear in the length of the container.


5 Conclusions and Perspectives


We have shown how template template parameters are typically employed. They
can be used to give library and class designers new power in providing the user
with a facility to adapt the predefined behavior of classes and functions according
to his needs and application context. This is especially important if one wants
to build on top of already existing generic libraries like the STL.


With our example we demonstrate how template template parameters and
generic programming can be used to achieve a flexible design. In contrast to usual
template parameters, which parameterize with concrete types, template template
parameters allows one to parameterize with incomplete types. This is a kind of
structural abstraction compared to the abstraction over simple types achieved
with usual template parameters. As templates are always instantiated at compile
time, this technique comes with absolutely no runtime overhead compared to
versions which don’t offer this type of parameterization.


One has to think about the applicability of template template parameters,
a C++ feature, to other programming languages. Generally, a similar feature
makes sense in every language that follows C++’s instantiation model of re-
solving all type bindings at compile time (e.g., Modula-3 and Ada). Template







template parameters are a powerful feature to remove some restrictions imposed
by such a strict instantiation model without introducing runtime overhead.


We measured our example with GCC 2.97 and two versions of the STL,
namely the from SGI [23] and one from Rogue Wave [20]. Table 1 compares our
Integer class with some widely available arbitrary precision libraries (GMP
3.1.1 [11], CLN 1.0.3 [12], NTL 4.1a [22] and Piologie 1.2.1 [24]). The tests have
been done on a PentiumIII 667MHz Linux system using the PCL library [6].


bits GMP CLN NTL Piologie Integer† Integer‡ RW-Integer‡ Integer§ RW-Integer§


Addition of n-Bit numbers


128 820 718 2.087 509 3.693 4.119 3.275 1.658 2.038
3.846 4.375 6.080 3.290 6.186 6.723 7.186 4.411 4.014


1.024 1.001 871 2.649 1.210 16.769 18.025 7.671 3.078 2.974
4.336 4.596 6.350 5.392 17.512 17.961 10.892 5.574 4.497


8.192 1.691 1.971 7.350 3.748 121.805 128.774 40.046 13.456 11.668
5.317 7.986 12.603 8.601 104.750 113.095 45.748 14.231 11.241


65.536 8.174 10.505 43.530 23.491 960.955 1.015.816 278890 96.657 80.150
32.217 48.811 65.176 52.254 844.618 952.695 339371 104.143 77.745


Multiplication of n-Bit numbers


128 922 990 1.900 1.293 6.181 6.687 4.088 2.798 2.646
6.450 4.513 6.972 5.461 11.744 12.674 11.601 9.682 6.743


1.024 8.815 13.740 28.837 34.383 71.585 72.311 52.074 40.234 32.564
16.572 24.736 29.671 43.539 60.661 63.933 48.949 35.594 30.221


8.192 240.738 394.093 828.825 940.873 2.852.491 2.786.261 2.749.538 2.399.391 1.882.072
243.438 523.903 671.630 926.693 1.853.809 1.971.483 18.67.466 1.715.800 1.488.350


65.536 5.477.327 13.370.805 22.798.590 28.939.305 167.792.489 163.149.346 171.090.108 151.754.471 118.611.246
5.158.666 14.695.137 18.031.103 27.289.599 117.485.455 122.771.953 120.008.350 107.798.237 93.442.537


Table1. Performance comparison of our Integer class compared to other arbi-
trary precision libraries. While GMP is a C library with optimized assembler
routines, all the other libraries are written in C++. The first line of every en-
try denotes the number of processor instructions while the second one indicates
the number of processor cycles needed for one operation. Integer† stands for
Integer<slist> , Integer‡ for Integer<std::list> , and Integer§ for Inte-


ger<std::vector> . The “RW-” prefix marks tests, which have been taken with
the Rogue Wave STL in contrast to the other tests, which used the SGI STL.


The results of some tests with garbage collected containers using the Boehm-
Weiser-Demers [7] collector have been not very promising. However the signif-
icant performance difference between the two STL versions we used indicate
that this may be no fundamental problem, but a problem of bad compiler op-
timization and the orthogonal design of the SGI-STL containers and the plain
Boehm-Weiser-Demers garbage collector. Therefor we plan further tests in the
future using optimizing compiler and other collectors like TGC [18], [19], which
address exactly this problems.







6 Compiler Support


One major problem in working with template template parameters is not a con-
ceptual, but rather a practical one. Even now, three years after the publication
of the ISO C++ standard, not all compilers implement this feature.


We were able to compile our examples only with the following compilers:
Borland C++ V5.5 [3], Visual Age C++ V4.0 [13], Metrowerks V6.0 and all
compilers based on the edg front-end V2.43 [8]. The snapshot versions after
November 2000 of the Gnu C++ Compiler [10] also meet the requirements.
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