

Compiling and Distributing Generic Libraries
with Heterogeneous Data and Code Representation

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Roland Weiss

aus Ratibor

Tübingen
2003

Tag der mündlichen Qualifikation: 29.01.2003
Dekan: Prof. Dr. Ulrich Güntzer
1. Berichterstatter: Prof. Dr. Rüdiger Loos
2. Berichterstatter: Prof. Dr. Sibylle Schupp

(Rensselaer Polytechnic Institute, Troy, NY, USA)

To Hannah and Edda

Abstract

Generic programming has evolved at fast pace in recent years. There now exist nu-
merous programming languages that support genericity, and generic libraries were de-
veloped that range from small utility libraries to huge general purpose or domain spe-
cific libraries. The importance of specification and verification was further emphasized
in the context of generic algorithms and data structures, which became major issues in
the research community. The largest generic code base is available in C++ which plays a
central role for generic programming, because the Standard Template Library (STL) was
implemented in C++. The STL ignited the application of its underlying principles to other
domains, resulting in influential C++ libraries like the Matrix Template Library (MTL) or
the Boost Graph Library (BGL).

This thesis deals with a problem that became apparent for languages like C++, Ada,
or Modula-3 that support genericity with heterogeneous data and code representation,
especially with regard to large generic libraries. These libraries cannot be compiled
and distributed without their source code. Application programs using generic libraries
will have to compile the occurring instantiations of generic constructs from the libraries’
source code repeatedly during their development cycle.

We first present a general approach to overcome the conceptual problem that neces-
sitates this practice. It mandates a strict separation of compiler front-end and back-end
which are connected by a special intermediate representation. Then an overview of the
GILF system is given, our incarnation of the solution. Although the GILF system was
developed for SUCHTHAT, a generic programming language devised by Sibylle Schupp,
GILF is designed to support a wide range of generic programming languages with vary-
ing semantics for instantiation, specialization and overloading. We achieve this by sep-
arating declarations from definitions, as well as splitting the instantiation process into
analysis and application. The information gathered by instantiation analysis is propa-
gated from a compiler’s front-end to its back-end as explicit bindings of instantiation pa-
rameters to arguments in the mentioned intermediate language. GILF even allows bind-
ing multiple algorithms to one function symbol, which provides the basic mechanisms
required for online or off-line algorithm selection. Algorithm selection can be exploited
with instantiation at load-time or run-time.

Thereafter, we introduce XGILF, the XML-based external GILF representation. An ex-
tensive specification is elaborated, covering all core features of GILF. Finally, the GILF
prototype implementation is discussed in detail, showing the feasibility of our approach.

Zusammenfassung

Generische Programmierung hat sich in den letzten Jahren mit beträchtlicher Geschwin-
digkeit entwickelt. Es existiert nun eine Vielzahl von Programmiersprachen die Gene-
rizität unterstützen. Weiterhin wurden generische Bibliotheken erstellt, die von kleinen
Hilfsbibliotheken bis hin zu großen Universal- oder bereichsspezifischen Bibliotheken
reichen. Die Bedeutung von Spezifikation und Verifikation wurde im Kontext generi-
scher Algorithmen und Datenstrukturen weiter betont, deshalb entwickelten sich diese
beiden Aspekte zu Kernpunkten in der Forschungsgemeinde. Die größte Basis an gene-
rischem Code existiert in C++, das eine zentrale Rolle für generische Programmierung
spielt, da die Standard Template Library (STL) in C++ implementiert wurde. Die STL in-
itiierte die Anwendung der ihr zugrunde liegenden Prinzipien auf andere Bereiche, was
einflussreiche Bibliotheken wie die Matrix Template Library (MTL) oder die Boost Graph
Libraray (BGL) hervorbrachte.

Diese Arbeit beschäftigt sich mit einem Problem, dass bei Sprachen wie C++, Ada95
oder Modula-3 deutlich wurde, die Generizität mit heterogener Daten- und Codedar-
stellung unterstützen, insbesondere im Hinblick auf große generische Bibliotheken. Die-
se Bibliotheken können ohne ihren Quellcode nicht übersetzt und verteilt werden. An-
wendungsprogramme, die generische Bibliotheken verwenden, müssen in ihrem Ent-
wicklungszyklus die auftretenden Instanzen generischer Konstrukte wiederholt aus dem
Quellcode der Bibliotheken übersetzen.

Wir präsentieren zuerst einen allgemeinen Ansatz, der die Überwindung des konzep-
tuellen Problems ermöglicht, das dieses Vorgehen erforderlich macht. Es schreibt eine
strikte Trennung des Übersetzer-Frontends und -Backends vor, die über eine besonde-
re Zwischensprache verbunden sind. Anschließend geben wir einen Überblick über das
GILF-System, unsere Realisierung der Lösung. Obwohl das GILF-System ursprünglich für
SUCHTHAT entwickelt wurde, einer von Sibylle Schupp konzipierten generischen Pro-
grammiersprache, unterstützt sein Design eine weite Spanne von generischen Program-
miersprachen mit variierender Semantik für Instanziierung, Spezialisierung und Über-
ladung. Wir erreichen dies durch die Separierung von Deklarationen und Definitionen
sowie der Teilung des Instanziierungsprozesses in Analyse und Applikation. Die mittels
Instanziierungsanalyse bestimmten Informationen werden in der angesprochenen Zwi-
schensprache als explizite Bindungen von Instanziierungsparameter an ihre Argumen-
te vom Übersetzer-Frontend zum Übersetzer-Backend propagiert. GILF erlaubt es sogar
mehrere Algorithmen an einen Funktionsbezeichner zu binden, was den grundlegenden
Mechanismus zur Verfügung stellt, der für Offline- oder Online-Algorithmenselektion
benötigt wird. Algorithmenselektion kann durch Instanziierung zur Lade- oder Laufzeit
ausgenutzt werden.

Danach stellen wir XGILF vor, die XML-basierte externe Repräsentierung von GILF.
Eine umfangreiche Spezifikation wird erarbeitet, die alle Hauptmerkmale von GILF be-
handelt. Abschließend wird die prototypische GILF-Implementierung diskutiert, die die
Umsetzbarkeit unseres Ansatzes zeigt.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Overview . 2

2 From Concepts to Machine Code 3
2.1 Generic Programming . 3
2.2 Exploring Genericity with the Factorial and Gamma Function 5

2.2.1 Mathematical Background . 5
2.2.2 Genericity . 6

2.3 Algebraic Specification in SUCHTHAT with TECTON 8
2.4 Integrating Specification and Implementation 11
2.5 Generating Code for Generic Algorithms 14

2.5.1 The Instantiation Process . 14
2.5.2 Overview of a Traditional Compilation System 16
2.5.3 Incorporating Instantiation into the Compilation Process 18
2.5.4 Easing the Tension . 20

2.6 Summary . 22

3 The GILF Compilation System 24
3.1 Rationale for the Intermediate Representation 24

3.1.1 Abstraction Level . 25
3.1.2 Structure . 27
3.1.3 Encoding . 29

3.2 Infrastructure of a GILF System . 30
3.2.1 Front-Ends . 30
3.2.2 Code-Generating Linker and Loader 31
3.2.3 Native Code Cache . 32
3.2.4 Runtime System . 34
3.2.5 Optimization System . 42

3.3 Summary . 46

4 The Annotated XGILF Specification 47
4.1 A Concise Summary of XML . 47

4.1.1 Elements, Attributes, and Text . 47
4.1.2 Entities, Well-Formedness, and more 48
4.1.3 Valid documents . 48
4.1.4 Namespaces . 48
4.1.5 XML Parsing Technologies: DOM and SAX 49

ii CONTENTS

4.2 Prolog . 50
4.3 Namespace . 50
4.4 General Attributes . 52
4.5 Root Element . 55
4.6 Compilation Units . 55

4.6.1 Import Section . 57
4.7 Declaration Section . 57

4.7.1 Type Declarations . 57
4.7.2 Instantiation Parameters . 58
4.7.3 Function Declarations . 59
4.7.4 Value Parameters . 59

4.8 Definition Section . 61
4.8.1 Data Structures . 62
4.8.2 Algorithms . 63

4.9 Binding Section . 68
4.9.1 Function and Type Bindings . 69
4.9.2 Static Instantiation Parameter Bindings 70
4.9.3 Dynamic Value Parameter Bindings 71

4.10 Static Storage . 71
4.10.1 Representing Value . 72

4.11 Designators . 75
4.12 Summary . 77

5 The GILF Prototype 78
5.1 Modern C++ Programming . 78

5.1.1 Traits . 78
5.1.2 Policies . 79
5.1.3 Template Metaprogramming . 79
5.1.4 Boost . 79

5.2 General Structure . 80
5.2.1 Coding Conventions . 80

5.3 Internal Representation . 81
5.3.1 Base Class GILF_Node . 81
5.3.2 Defining a Subclass of GILF_Node 84
5.3.3 The Factory for GILF_Nodes . 85

5.4 General Facilities . 86
5.4.1 Logging . 86
5.4.2 Symbol Table . 87

5.5 Visiting GILF Nodes . 88
5.6 Instantiation Application . 90

5.6.1 Approach . 91
5.6.2 Visitation Graphs . 92
5.6.3 Implementation . 94

5.7 Summary . 101

6 Related Work 102
6.1 Genericity . 102

6.1.1 Classification . 102
6.1.2 Generic Libraries . 105

CONTENTS iii

6.1.3 Programming Languages . 108
6.1.4 Discussion . 109

6.2 Intermediate Representations . 109
6.2.1 Nongeneric Intermediate Representations 109
6.2.2 Generic Intermediate Representations 116
6.2.3 Discussion . 119

7 Conclusions and Future Work 121
7.1 Conclusions . 121
7.2 Future Work . 121

A The Utility Library 123
A.1 Representing Nodes with Properties . 123

A.1.1 Nodes . 123
A.1.2 Properties . 125

A.2 A Generic Logging Facility . 129
A.3 XML Utilities . 131
A.4 Loki Extensions and Modifications . 133

A.4.1 Factory and Smart Pointers . 133
A.4.2 Truncating a Typelist . 133
A.4.3 Visiting Subnodes . 134

B Auxiliary libgilf Components 136
B.1 Transforming External into Internal Representation 136

B.1.1 The Application Interface . 136
B.1.2 Implementing an Accessor . 138
B.1.3 Roundup . 143

B.2 Code Generation . 144
B.2.1 Visitation Graphs . 144
B.2.2 Implementation . 145

C The XGILF Core Library 150
C.1 Boolean . 150
C.2 Machine Types . 152
C.3 Integers . 153
C.4 Arrays . 155
C.5 Unicode Characters . 157
C.6 Functions . 158

D Examples 162
D.1 Mapping SUCHTHAT to GILF . 162
D.2 Factorial . 162

D.2.1 XGILF Representation . 162
D.2.2 Generated C++ Representation 167

D.3 Regression Tests . 168

Colophon 172

Bibliography 173

iv CONTENTS

Chapter 1

Introduction

1.1 Motivation

Generic programming has attracted increasing attention recently. This applies to the re-
search area as well as to the industrial field. The inclusion of the Standard Template
Library (STL) into the C++ International Standard marks a milestone in the develop-
ment of this relatively young field of research. The generic programming paradigm is
especially well suited for structuring and implementing libraries, because it promotes a
thorough examination of the problem domain at hand. Ultimately, this approach results
in the problem domain’s partition into orthogonal components, principally algorithms
and data structures. The positive effect of this process is increased code reuse and flexible
composability and adaptability of the components of a generic library, without sacrificing
efficiency. The outcome of research efforts following the principles of generic program-
ming shows in work like the STL, the Boost Graph Library (BGL), or the Matrix Template
Library (MTL).

Despite the apparent success of generic programming and its positive impact on li-
brary design, traditional compilation systems support the development of generic li-
braries in a very limited way only. These compilation systems distribute libraries as
archives of compiled object files containing machine code. This general practice fails for
generic libraries in languages with nonuniform data representation, which is common
to all widely used imperative languages, like C++, Ada95, or Modula-3. For those, the
compiler does not know the memory layout of generic, uninstantiated data structures in-
side libraries, as user provided instantiation arguments can generate an infinite number
of data structure layouts. The same holds true for generic algorithms. An operator in a
generic algorithm can resolve to a function call or a machine code instruction, resulting
in different code representations. In general, everywhere an algorithm manipulates data
that depends on the algorithm’s instantiation parameters, machine code generation is not
possible. These problems lead to the current practice of distributing generic libraries as
source code.

1.2 Contribution

The focus of this thesis is to propose a solution to overcome this unfortunate situation.
Our work evolved in the context of the SUCHTHAT project. The design of SUCHTHAT, a
new programming language introduced by Sibylle Schupp, was directed fundamentally
by the motivation to create a generic programming language. Nevertheless, the work

2 Chapter 1 · Introduction

presented in this thesis is a general approach to building compiler and linker systems for
generic programming languages with nonuniform data and code representation.

A central aspect of our system is the complete separation of a traditional compilation
system into two distinct entities, the front-end and the back-end, and making this sepa-
ration explicit. The front-end program handles lexical, syntactical and semantical analy-
sis of the source code and produces an intermediate representation. Analyzing generic
code can be very computation intensive, because it requires a powerful type system that
checks the appropriateness of instantiations. Therefore, the intermediate representation
should capture all these precomputed information. The back-end manifests itself as a
code-generating linker and loader. It operates on units stored in the intermediate repre-
sentation and creates a machine dependent executable program. The decision to defer
code generation to link-, load-, or even runtime enables us to store generic libraries in the
form of an intermediate language.

The machine architecture neutral intermediate representation is at the core of our so-
lution to the compilation and distribution problem of generic libraries. The intermediate
representation’s characteristic of processor architecture independence is shared by SDE,
the distribution format of the Oberon-3 system, Java Bytecode, the intermediate represen-
tation of the Java Virtual machine, and more recently, CIL, the intermediate language at
the heart of Microsoft’s .NET platform. All these formats do not support generic compo-
nents, but rather are centered around the object oriented programming paradigm. Thus,
our work concentrates on distilling the demands of generic programming on the con-
stituents of an intermediate representation.

GILF, the Generic Intermediate Library Format, represents our vision of an interme-
diate representation that supports generic programming adequately. It provides facilities
for declaring generic functions and types, defining generic algorithms and data struc-
tures, and binding the definitions to the declarations. XGILF, the XML-based external
representation of GILF, is the foundation of the prototypical implementation of a GILF
back-end in modern C++. The nature of generic programming and GILF pave the way to
new high level optimizations like profile driven algorithm selection and replacement at
load- or runtime.

The studies of the demands of the generic programming paradigm on a compilation
system that resulted in the architecture of the GILF system and the XGILF specification
constitute the main contributions of this thesis to generic programming research.

1.3 Overview

The remainder of this thesis will proceed as follows. Chapter 2 first discusses general
aspects of generic programming and then walks the reader through the major parts of our
generic programming language SUCHTHAT. This includes the specification language, its
integration with generic algorithm implementations, and code generation for instances of
these generic algorithms. In chapter 3, the GILF compilation system is discussed at length,
preceded by a rationale for the intermediate representation. Chapter 4 presents the XGILF
specification, followed by a description of the implementation of the GILF prototype in
chapter 5. Related work is considered in chapter 6 and chapter 7 concludes with an
outlook on future work. The appendix contains more implementation details, a complete
translation example, and the GILF core library declarations in XGILF.

Chapter 2

From Concepts to Machine Code

In this chapter we will give an informal introduction to generic programming. A small
example guides us through all parts of a generic programming system and the focal in-
terest points are identified and discussed. The discussion starts with the specification of
generic concepts, then touches the implementation of generic algorithms and finally ends
in looking at the problems of code generation for these algorithms, especially when col-
lected in libraries. While elaborating on the example, the SUCHTHAT project [ScLo98] will
be sketched incidentally, the context in which the work presented in this thesis evolved.

After having looked at all parts of a generic programming system we should be ready
to formulate the requirements for an intermediate representation that supports compila-
tion of generic programs with nonuniform data and code representation.

2.1 Generic Programming

When looking up the word generic in the Merriam Webster Dictionary, we get the follow-
ing result:

Main Entry generic
Etymology French générique, from Latin gener-, genus: birth, kind, class
Date 1676
1 a relating to or characteristic of a whole group or class
1 b being or having a nonproprietary name
1 c having no particularly distinctive quality or application
2 relating to or having the rank of a biological genus

Table 2.1: The entry for generic in the Merriam Webster Dictionary.

The first meaning of generic denoted by 1a in table 2.1 portends to the idea of generic
programming. A generic algorithm characterizes a possibly unlimited group of concrete
algorithms, the generic algorithm’s instances. The same generalization is available for
data structures.

This generality is achieved by introducing static type parameters in addition to com-
mon typed runtime value parameters. Then algorithms can be written using type vari-
ables which are not yet bound to concrete data structures. The user of a generic algorithm
generates these bindings, either implicitly or explicitly, and thus by performing an instan-
tiation the user creates an instance of the generic construct. Implicit bindings are possible

4 Chapter 2 · From Concepts to Machine Code

when the static type parameters are deduced from the types of the dynamic value param-
eters at the calling site. The notion of static type parameters points to the important fact
that generic programming is especially suited to be employed in languages with a strong
static type system [Gas99][Gas01].

This is of course a rather technical view on generic programming, so let us inspect the
objectives of generic programming from the software engineering perspective. Alexan-
der Stepanov, one of the main propagators of generic programming, condenses its goals
successfully:

Generic programming is a discipline that studies systematic organization of
useful software components. Its objective is to develop a taxonomy of algo-
rithms, data structures, memory allocation mechanisms, and other software
artifacts in a way that allows the highest level of reuse, modularity, and us-
ability. ([MuDeSa01], p. xxi)

He emphasizes the systematic analysis of the problem domain such that one finally
conceives a library of software components that can be flexibly combined. These compo-
nents are primarily generic algorithms and data structures. Code or component reuse is
accomplished by two means. The first one is the flexible composability of generic com-
ponents which results from the separation of orthogonal concerns. The other one is the
fact that the compiler performs requested instantiations automatically by substituting the
instantiation parameters with the arguments. In traditional libraries, these instantiations
have to be written by hand, e.g. LAPACK [AnBaBi+90], SACLIB [CoLo90] or SAC-2
[HoNeSc95]. In these libraries, there is an abundance of concrete algorithms, perform-
ing practically the same generic algorithm, but written by hand for all the combinations
of supported types, their representations and algorithms operating on them. Types and
their representation are encoded in the function name, e.g. SGEBRD from LAPACK is a
single precision (S) routine that performs a bidiagonal reduction (BRD) of a real general
matrix (GE).

The type abstraction introduced by genericity does not necessarily result in a runtime
penalty for instantiated algorithms. This is an important observation, as generic pro-
gramming tries to yield algorithms that are as efficient as hand-coded ones after instan-
tiation. Schupp mentions the yardstick of efficiency in her thesis [Sch96] as an important
motif in generic programming1. Austern makes this especially clear:

Generic programming, unlike object oriented programming, does not require
you to call functions through extra levels of indirection, it allows you to write
a fully general and reusable algorithm that is just as efficient as an algorithm
handcrafted for a specific data type. ([Aus98], p. xvii)

The importance of the fact that the abstractness of the components comes without
loss of efficiency is further stressed by not only making the requirements on syntax and
semantics part of a generic component’s interface, but also the requirements on their
runtime complexity.

We really have to emphasize that requirements are a central aspect in generic pro-
gramming. The STL is often called a set of requirements and Musser et al. even define

1She also talks about the other common usage of the word generic in information technology, e.g. generic
hardware drivers, which usually counteracts the goal of efficiency. This meaning could be related to entry
1c in table 2.1.

2.2 · Exploring Genericity with the Factorial and Gamma Function 5

generic programming as requirement oriented programming in [MuScLo98]. Concepts are col-
lections of requirements, and the development of such concepts are the key to reusable
generic components. Concepts allow us to rely on correctness of the instantiations and
compositions we create form generic components. For Austern, concepts are at the heart
of generic programming:

Defining abstract concepts and writing algorithms and data structures in term
of abstract concepts is the essence of generic programming. ([Aus98], p. xvii)

2.2 Exploring Genericity with the Factorial and Gamma Func-
tion

We will now examine all relevant aspects of genericity in more detail by looking at the
ordinary factorial function n!, with 0! = 1 and satisfying the functional equation (n+1)! =
(n + 1) · n!, ∀n ∈ N.

2.2.1 Mathematical Background

While generalizing the factorial function we will visit the closely related gamma function.
The gamma function for positive reals is defined by the the integral

Γ(x) =
∫ ∞

0
tx−1e−tdt, ∀x ∈ R+ (2.1)

The gamma function fulfills the functional equation Γ(x + 1) = x · Γ(x), ∀x ∈ R+ and
has the nice property that Γ(n + 1) = n!, ∀n ∈ N, i.e. the gamma function takes the
values of the factorial function for natural numbers, but offset by one. We want to state
the following theorem without proof that allows one to characterize the gamma function
with the mentioned functional equation. If for functions F : R+ → R+ these properties
hold

(a) F (1) = 1
(b) F (x + 1) = x · F (x), ∀x ∈ R+ (2.2)
(c) ln ◦ F is convex

then F = Γ.
Its is even possible to extend the definition set of the gamma function to negative

reals. One way is to use the form contributed to Gauss:

Γ(x) = lim
n→∞

n! · nx

x · (x + 1) · . . . · (x + n)
, ∀x ∈ R\Z−0 (2.3)

Notice the poles at all negative integer values of x. Another popular form for the gamma
function is the Weierstrass formula:

1
Γ(x)

= xeγx
∞∏

n=1

(
1 +

x

n

)
e−

x
n (2.4)

where γ = limn→∞ 1 + 1
2 + . . . + 1

n − ln(n) is Euler’s constant. The reflection theorem
is instrumental in the computation of the gamma function on negative reals as it reduces
the definition of Γ(−x) to Γ(x):

Γ(−x)Γ(x) =
−π

xsin(πx)
(2.5)

6 Chapter 2 · From Concepts to Machine Code

To conclude our short overview of the gamma function, a plot of the gamma function
is presented in figure 2.1. Proofs for the presented theorems can be found in Analysis
textbooks like [Heu00].

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Figure 2.1: Plot of the gamma function.

2.2.2 Genericity

After briefly recapitulating these mathematical facts, we will write a generic algorithm to
compute the factorial function in C++.

"../src/examples/factorial.cpp" 6 ≡
#include <iostream>
// Function template to compute factorial.
template <typename N>
N factorial(const N& n)
{
// Initialize the result and counter.
N m = 1;
N i = 1;
// Iteratively compute the factorial.
while (i <= n)
m = i++ * m;

// Return the result.
return m;

}
// Test two instantiations of the factorial algorithm.
int main()
{
std::cout << factorial<>(12) << " " // instantiation type deduced as int

<< factorial<long double>(12) // instantiate with type long double
<< std::endl;

// Output: 479001600 4.79002e+08
}

Function templates are the C++ language feature to write generic algorithms. A function
template, or to be more general, a generic algorithm cannot be translated into machine
code and executed. Only instantiations of generic algorithms result in executable code.

2.2 · Exploring Genericity with the Factorial and Gamma Function 7

The process of instantiating a generic algorithm is defined as binding the algorithm’s type
parameters to concrete data structures, i.e. resolving the genericity. In the example above,
the first instantiation creates a concrete factorial algorithm for type int. The type int is
deduced from the argument passed to the function. The second instantiation explicitly
binds the type parameter to the machine type long double. Here, we encounter one of
the fundamental questions of generic programming:

How does one determine which instantiations are valid? (P1)

In C++, this question has a very pragmatic answer. If the function template is syn-
tactically correct after replacing all occurrences of the type variables with their bound
concrete types, the instantiation is valid. Therefore, we have no guarantees at all that
the instantiated generic algorithm will compute any reasonable results, i.e. the instan-
tiation may succeed syntactically, but the operations defined for the bound type lead to
erroneous behavior. We have to consider another core issue of generic programming:

How does one state the requirements on the instantiation arguments? (P2)

The requirements imposed on a generic algorithm’s type parameters can be either se-
mantical and syntactical, i.e. specification requirements, or algorithmic. To state syntacti-
cal requirements is the simplest task and it would be reasonable to expect a C++ language
mechanism to specify at least the syntactical requirements that a template argument has
to meet. Even in our simple factorial function template, a concrete type that is bound to
the template type parameter N must support these operations:

default construction N()
assignment N& operator=(const N&)
post increment N& operator++(int)
less than equal comparison operator<=(const N&, const N&)
multiplication operator*(const N&, const N&)
constants 1

Table 2.2: List of implicitly required operations in the C++ factorial function template.

The only way a user of the factorial template can obtain this information is by looking
at the function’s C++ source code. This means, the requirements on template arguments
are available implicitly only in C++. This is known as unconstrained genericity [Eve97]
or unbounded polymorphism. Modula-3 falls into this category, too.

Ada95 [Bar95], Cecil [Cha98], Theta [LiCuDa+95], and other languages offer possibil-
ities to restrict instantiation parameters to types that conform to a given interface at the
syntactical level, as well as to types that have special properties related to the language’s
type system, like a subtype relationship.

To offer even more powerful instantiation checking capabilities it would be benefi-
cial to be able to state semantical requirements. Thus, integrating methodologies like
algebraic specification [AsKrKr99][Kla83] or abstract state machines [Gur00] into generic
programming languages is a desirable goal. Even further away are ways to express algo-
rithmic requirements, which enforce the efficient execution of instantiated generic algo-
rithms:

8 Chapter 2 · From Concepts to Machine Code

It should be noted that while the operational semantics of the operations can
be specified rigorously by specifying the set of valid expressions and their se-
mantics, the complexity is specified informally; a totally new insight is needed
to find a way for specifying complexity requirements in a rigorous but prac-
tically useful way. ([MuDeSa01], p. xxiv)

The two discussed problems influence the design of generic programming languages,
but another important question comes up when we create code for generic algorithms.

How does one translate generic algorithms to machine code? (P3)

This problem heavily affects the design and implementation of a compiler system for
generic programming languages. There are two fundamental approaches.

The first one creates only one machine representation for all instantiations. This way,
all concrete types must have a uniform representation. This kind of data representation
is usually refered to as boxed or homogeneous [Ler98][Ler97][OdWa97]. The implemen-
tation of boxed types consists of a pointer to the heap that holds the data’s value and
on some metainformation to identify the type. Most functional programming language
implementations follow this approach, e.g. Haskell, ML or CAML, but also the proposed
extension to Java will support genericity this way [BrCoKe+01].

The other approach creates a distinct machine representation for each instantiation of
a generic component. This is necessary if the programming language employs a nonuni-
form data representation. Not until instantiation time does the compiler know the exact
layout of the bound data structures, which it needs in order to be able to create machine
code that manipulates this data. C++, Modula-3 and Ada95 act like this. The uniform rep-
resentation, enabled by adding a pointer indirection, carries a performance hit. This is
not the case for nonuniform representations, because the data is accessed directly. There-
fore we decided to take this approach, as one goal of genericity is to achieve efficiency
on par with hand-coded programs. The implications of this decision will be expatiated
upon in section 2.5.

The three problems P1, P2, and P3 are detailed in the following sections, along with
approaches and solutions applied in the SUCHTHAT project.

2.3 Algebraic Specification in SUCHTHAT with TECTON

We already mentioned the importance of requirements for generic programming and
would therefore recommend that the specification of requirements should be an integral
part of a generic programming language. In the SUCHTHAT project, we decided to inte-
grate TECTON [KaMu92][Mus98], an algebraic specification language.

In TECTON, functions and sorts are combined in concepts together with their require-
ments. Function signatures can be seen as syntactical requirements, whereas the seman-
tics of the operations are introduced with requires and generates clauses. TECTON al-
lows sort, function and concept replacements in concept instantiations, a powerful ability
especially well suited for our purposes.

A library of algebraic concepts [MuScSc+99] was formulated in TECTON and we will
now extend this library in order to provide the specification requirements for the factorial
example. This extensions are of explanatory nature and are not intended to be proven
as the most general ones. They will aid us in motivating some of the constructs that

2.3 · Algebraic Specification in SUCHTHAT with TECTON 9

constitute parts of the GILF intermediate representation. All the extensions to the original
library were tested with the TECTON checker by Rüdiger Loos.

We start by introducing the concept Functional-equation-factorial that contains
an unary operator F2 that fulfills the general functional equation F (x + 1) = g(x) · F (X).
Therefore, we restrict the domain on which the involved functions operate to be sorts of a
semiring with multiplicative identity, which introduces a successor function succ. Notice
the Precedence statement that allows one to extend the set of available operators at run
time.

"../src/examples/factorial.sth" 9a ≡
Definition: Semiring-with-multiplicative-identity
refines Semiring, Identity;
introduces
succ: domain -> domain;

requires (for d: domain)
succ(d) = d + 1.

Precedence: {*} < {F}.

Definition: Functional-equation-factorial
uses Semiring-with-multiplicative-identity;
introduces
F: domain -> domain,
g: domain -> domain;

requires (for x: domain)
F(x + 1) = g(x) * F(x).

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

We need to define a semiring with identities as the last prerequisite before we can in-
troduce a general factorial function. This is done by refining the semiring with multi-
plicative identity. The factorial function is now introduced in an extension to the concept
Semiring-with-identities. For this purpose, we rename operator F from the factorial
functional equation as operator ! and identify function g with the successor function. We
still have to add the requirement 0! = 1 and finally arrive at a very general notion of the
factorial function.

"../src/examples/factorial.sth" 9b ≡
Definition: Semiring-with-identities
refines Semiring-with-multiplicative-identity,

Identity [with + as *, 0 as 1].

Precedence: {*} < postfix{!}.

Extension: Semiring-with-identities
uses Functional-equation-factorial
[with Semiring-with-identities as Semiring-with-multiplicative-identity,

! as F, succ as g];
introduces
! : domain -> domain;

requires (for d: domain)
0! = 1.

2The reason for declaring F as operator with the Precedence sentence is a technical one. When we want
to use the postfix operator ! for the factorial function later, it would not be possible to replace F with this
operator if F is not an operator itself.

10 Chapter 2 · From Concepts to Machine Code

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

Based on the introduced concepts one can implement a factorial algorithm that works for
example on naturals. It may be written almost in terms of the given functional require-
ments. We will examine the interconnections between algorithms and concept specifica-
tions in the next section.

But what about the gamma function? The gamma function enables a generalization of
the factorial function on naturals to reals, but is a specialization of the introduced general
factorial function, offset by one. So in order to come up with a factorial function that can
handle reals, we will give a TECTON specification for the gamma function now.

Again, we have to extend and define some concepts first. Function g from the concept
Functional-equation-factorial collapses to the identity function in case of the gamma
function. Therefore we add the identity function id in an extension of the Domain con-
cept. Because we specify the gamma function for positive reals only3, such a concept is
defined. In the concept Positive-Real we introduce sort naturals as a subsort of sort
positives, because we want to relate the gamma function at natural number values to
the factorial function later on. Finally, the concept Real is extended with the logarithm
and exponentiation functions, which will be needed to specify the convexity property.

"../src/examples/factorial.sth" 10 ≡
Extension: Domain
introduces
id: domain -> domain;

requires (for d: domain)
id(d) = d.

Definition: Positive-Real
refines Real, Semiring-with-multiplicative-identity;
introduces
positives < reals,
naturals < positives,
+: positives x positives -> positives,
*: positives x positives -> positives,
1: -> positives;

requires (for p, q: positives; x, y: reals)
(p = x and q = y) implies p + q = x + y,
(p = x and q = y) implies p * q = x * y,
1 * p = p,
x: positives = (0 < x),
(for p: positives)
p: naturals = (bpc = dpe).

Extension: Real
uses Positive-Real;
introduces
e: reals -> positives,
e: -> positives,
ln: positives -> reals;

requires (for x, y: reals; p: positives)

3For the explanatory example it is sufficient to work with the definition of the gamma function for posi-
tive reals given in equation 2.1. In the introductory section we showed the extension to negative reals (see
equations 2.3 and 2.4), and a complex gamma function exists also. But these more general functions would
have required an even larger set of accompanying concepts.

2.3 · Algebraic Specification in SUCHTHAT with TECTON 11

e(x + y) = e(x) * e(y),
e(1) = e, not(e = 1),
x < y implies e(x) < e(y),
ln(e(p)) = p, e(ln(p)) = e.

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

Now that the algebraic prerequisites are provided for our purposes, we extend the con-
cept Real with the gamma function by renaming the function F and g from the general
functional equation as Γ and id, respectively. Notice how we state the requirement that
ln ◦ Γ is convex, which is needed to reduce F to be the gamma function uniquely. This
requirement could be condensed into a concept of its own. This is not trivial because we
have to argue not simply on sorts and functions, but on function compositions, in our
case ln ◦ Γ.

The last step is to introduce the factorial function to the concept Real. We achieve
this by using a Lemma sentence which states that operator ! is just a shift of the gamma
function to the left by one. Before, the concept Natural is extended with the semiring
with identities4.

"../src/examples/factorial.sth" 11a ≡
Extension: Real
uses Domain [with positives as domain],

Functional-equation-factorial [with
Positive-Real as Semiring-with-multiplicative-identity,
positives as domain,
Γ as F, id as g];

requires (for λ, x, y: positives)
Γ(1) = 1,
(0 < λ and λ < 1) implies (for some z: positives)
ln(Γ(λ * x + (1 - λ) * y)) < (λ * ln(Γ(x)) + (1 - λ) * ln(Γ(y)))
where z = 1 - λ.

Extension: Natural
uses Semiring-with-identities [with naturals as domain, ! as !].

Lemma: Real requires (for n: naturals) Γ(n + 1) = n!.

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

The abstract concepts for defining generic factorial algorithms are developed now and in
the next section we will show how to write such algorithms in SUCHTHAT and how they
are integrated with the TECTON concepts.

2.4 Integrating Specification and Implementation

We can now give the implementation of the factorial algorithm. We start with the alge-
braicly general one that works for all semirings with identities.

"../src/examples/factorial.sth" 11b ≡

4This is needed as the concept Natural is introduced as an elementary concept in [MuScSc+99], i.e. it
does not participate in the the concept hierarchy like Real, Integer etc.

12 Chapter 2 · From Concepts to Machine Code

Algorithm: r := factorial(n) uses Semiring-with-identities
Input: n ∈ domain.
Output: r ∈ domain such that r = n!.
Local: i ∈ domain.
(1) // Initialize r and i.

r := 1;
i := 1.

(2) // Compute factorial.
while i 6= n do { r := i * r; i := i + 1 }.

(3) return r �

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

This is an iterative factorial algorithm, a straight forward recursive version is also very
common. It is crucial to connect the algorithm’s implementation to the function signature
from a concept. We accomplish this by using the function operator ! in the such that
clause. As n ∈ domain of the concept semiring with identities, and domain is a sort of this
concept, the operator ! is found. Therefore, the algorithm factorial will be recognized
as one of the operator’s implementations.

An important observation on this algorithm is that the termination property is guar-
anteed only if the input value n can be reached from 1 by repeatedly adding 1. Counter-
examples are all real numbers that are not naturals. The importance of verifying generic
algorithms is stressed in [Sch97].

Writing an algorithm to compute the gamma function is a tougher problem. One
common approach to this numerical computation problem is the Stirling formula(x

e

)x √
2πx < x! <

(x

e

)x √
2πx ·

(
1 +

1
12x− 1

)
(2.6)

which gives a good approximation of x! for large positive x, but fails to deliver good
results for x close to 1. Very accurate approximations are possible with Lánczos’ approx-
imation [Lan64] for the whole definition set, which is an improvement of the Stirling
formula that allows thorough control of the relative error. The most complex part in im-
plementing Lánczos’ approximation is calculating special coefficients. Spouge [Spo94]
proposed a variant of the Lánczos approximation which simplifies this part, the coeffi-
cients are given by simple formulas.

Yet another approach for computing the gamma function is mentioned by Bronstein
et al [BrSeMu00]. Using the functional equations

Γ(x) =
Γ(x + 1)

x
and Γ(x) = (x− 1)Γ(x− 1) (2.7)

it is possible to reduce the calculation of Γ(x) to tables on some interval of length 1, e.g.
x ∈ [1.5, 2.5[. We resort to an algorithm from Moshier [Mos89] that implements this
method, because the elemental arithmetic operations addition, subtraction, multiplica-
tion, and division are needed only. It returns good approximations for typical floating
point machine types.

"../src/examples/factorial.sth" 12 ≡
Algorithm: r := gamma_moshier(x) uses Integer, Real, Positive-Real
Input: x ∈ positives.
Output: r ∈ positives such that r = Γ(x).
Local: n, k ∈ integers, w ∈ reals, y ∈ positives.

2.4 · Integrating Specification and Implementation 13

(1) // Initialize constants.
if x < 1.5 then n := -b(2.5 - x)c else n := b(x - 1.5)c;
w := x - (n + 2).

(2) // Interpolate 1
Γ(l) , l ∈ [1.5, 2.5[.

y := ((((((((((((-0.000000199542863674 * w + 0.000001337767384067) * w -
0.000002591225267689) * w - 0.000017545539395205) * w +
0.000145596568617526) * w - 0.000360837876648255) * w -
0.000804329819255744) * w + 0.008023273027855346) * w -
0.017645244547851414) * w - 0.024552490005641278) * w +
0.191091101387638410) * w - 0.233093736421782878) * w -
0.422784335098466784) * w + 0.999999999999999999.

(2) // Main loop:
// x >= 2.5: Use Γ(x) = (x− 1)Γ(x− 1).
if n > 0 then
{
w := x - 1; k := 2;
while k <= n do { w := w * (x - k); k := k + 1 }

}
// x < 1.5: Use Γ(x) = Γ(x+1)

x .
else
{
w := 1; k := 0;
while k > n do { y := y * (x - k); k := k - 1 }

}.
(3) return w / y �

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

An algorithm for the factorial function for positive reals is now just a normalized call to
the gamma function.

"../src/examples/factorial.sth" 13 ≡
Algorithm: r := factorial(x) uses Positive-Real
Input: x ∈ positives.
Output: r ∈ positives such that r = x!.
(1) // Normalized call to the gamma function.

return Γ(x + 1) �

File defined by parts 9a, 9b, 10, 11a, 11b, 12, 13.

There are several points we want to elaborate on. They will influence the design of our
intermediate representation and point to new areas of further research.

Multiple Implementations and Specializations Before presenting one algorithm to
compute the gamma function, we mentioned two others. This is a fundamental property
of functions. There is usually more than one generic algorithm to compute the same func-
tion, but with different trade-offs. A prominent example are sorting algorithms. They all
perform the same task, they sort a sequential range of elements delimited by two iterators
according to an order relation. Very general algorithms are applicable to a great variety
of input ranges but may not execute as efficient as possible when applied to ranges that
would allow more specific algorithms, e.g. quicksort requires random access to the el-
ements in the range, whereas mergesort also works on ranges with sequential access to
the elements. Algorithms that operate on a limited set of types, compared to the most

14 Chapter 2 · From Concepts to Machine Code

general algorithm, are called specializations, a very important technique in generic pro-
gramming. Specializations put more constraints on their type parameters and exploit
these properties to produce more efficient realizations in terms of space or run time. A
specialization may restrict the type parameters even to one type, an example from the
C++ Standard Library is the vector<bool> specialization of the vector container. It is
optimized to occupy only one bit per element in memory. Summarizing, a function can
be implemented by multiple generic algorithms, and some of them, the specializations,
may be instantiated for a restricted set of type arguments only.

Algorithm Selection The insight that a function may be realized by several algorithms
leads to the interesting question which algorithm should be selected from the set of ap-
plicable candidates. Furthermore, which criteria should guide the algorithm selection?
Obvious assistants are the instantiation types. Specializations are introduced to exploit
properties of more specific instantiation types, so it seems natural to select more special-
ized algorithms or data structures if they are available. But sometimes the size of the
input sequence or even the order of the elements in the input sequence to a sorting al-
gorithm will determine which will perform best. For some applications, not the runtime
efficiency of an algorithm will be the decisive factor, but the quality of the numerical
approximation. This area in generic programming research is still very unexplored and
a categorization of the most important aspects combined with the appropriate selection
strategies is needed. Of course, the programmer should always have the possibility to
force the selection of the one algorithm he thinks is best suited for the given task.

Function Identifiers Generic algorithms are written at an abstract level, i.e. the op-
erations used to express the generic algorithms are generic themselves and are repre-
sented by overloaded function identifiers. When instantiating an algorithm, the used
operations must be bound to instantiated algorithms. Without the algorithm selection
step, this process has to produce a unique algorithm. A first prototypical implementa-
tion of SUCHTHAT showed that Baker’s overload resolution algorithm [Bak82] extends
to generic overload resolution nicely. The function identifiers used in expressing generic
algorithms in SUCHTHAT have their origin in TECTON concepts, thus the TECTON avail-
ability rules apply. Also, a renaming of the identifiers is possible to adapt function identi-
fiers to be used in other concepts5. SUCHTHAT has to provide a convenient way to link an
algorithm to the function it implements. This is done with the such that clause, which
ties the algorithm to a function identifier. In our example, the algorithm gamma moshier is
bound to the Γ identifier.

2.5 Generating Code for Generic Algorithms

In the preceding sections we detailed the development of abstract concepts and generic
algorithms that implement functions introduced in such concepts. Now we want to ex-
amine the transition from generic algorithms to executing code on a real machine.

2.5.1 The Instantiation Process

Generic algorithms cannot be translated into machine code as is based on a nonuniform
data representation. The reason is that the size of data structures replacing the generic

5In TECTON, the renaming of sorts and concepts is possible, too.

2.5 · Generating Code for Generic Algorithms 15

algorithm’s type variables is not known until the type variables are actually bound to
concrete data structures. The same is true for operations manipulating these data. For
instance, if the factorial function is instantiated with machine word integers, addition can
be bound to a built-in machine operation. For arbitrary precision integers, addition will
be bound to a function call that adds integers in this representation.

Therefore, code generation can proceed after instantiation only, where the missing
information is provided. To attain this goal, the following steps are necessary:

1. The generic algorithm must be instantiated, i.e. all type parameters must be bound
to instantiation types.

2. The instantiation types must be bound to data structures that realize them on the
machine level. If some of these data structures are generic, they have to be instanti-
ated themselves.

3. The function identifiers used in the generic algorithm must be bound to algorithms.
If some of these algorithms are generic, they have to be instantiated themselves.

4. The types used in the generic algorithm must be bound to data structures. If some
of these data structures are generic, they have to be instantiated themselves.

5. The fully instantiated algorithm is compiled into machine code.

We see that the instantiation of a generic algorithm is a recursive process. The re-
cursion ends when all data structures and algorithms used are finally bound to built-in
machine types and operations, respectively. Not until a generic algorithm is fully instan-
tiated code generation is possible. We will exemplify the transition process from generic
to concrete algorithm with a simple code fragment that prints the factorial for naturals in
the range from 1 to 10.

"../src/examples/factorial_test.sth" 15 ≡
Algorithm: Test_Factorial uses Natural, IOStream.
Local: i ∈ naturals.
(1) // Display factorials from 1 to 10.

for i = 1, ..., 10 do { CharOut << i! } �

The call to the factorial function is in the body of the for statement. The SUCHTHAT

front-end has to check that operator ! is really available. Then it has to validate its im-
plicit instantiation with naturals. If these conceptual checks succeed, all algorithms that
implement the operator ! have to be collected, as well as data structures that realize the
type naturals. We assume that the algorithm factorial from the previous section and
a built-in data structure uword are found. The data structure uword should represent the
native unsigned machine word on any given architecture. Step 1 and 2 of the transition
process are finished now.

Step 3 involves binding the function calls in the algorithm body to the realizing algo-
rithms. Table 2.3 shows these bindings for the factorial algorithm. The left column shows
the function signature taken directly from TECTON concepts. In the middle column the
requested instantiations are listed, for our example the types in the function signature
are replaced with the data structure uword, the bound type parameter. Finally, the right
column shows the selected algorithms.

All functions are bound to machine operations, so the recursion ends. Assignment is
also treated as a built-in operation. As the factorial algorithm works exclusively with the
type parameter domain which is bound to uword, step 4 is skipped. So we arrive at a fully
instantiated algorithm, which can be compiled into machine code and executed.

16 Chapter 2 · From Concepts to Machine Code

function instance algorithm/realization
6=(domain, domain) -> bool 6=(uword, uword) -> bool machine operation
+(domain, domain) -> domain +(uword, uword) -> uword machine operation
*(domain, domain) -> domain *(uword, uword) -> uword machine operation

1 -> domain 1 -> uword conversion to uword

Table 2.3: Bindings of function signatures to algorithms in algorithm factorial.

2.5.2 Overview of a Traditional Compilation System

For further discussion of code generation for generic programming languages, we will
first describe the architecture and functioning of a traditional compilation system. To this
end, we identify the entities relevant for the compilation process:

Compilation Unit A compilation unit is an input stream that is passed to the compiler
front-end after preprocessing. It is the compiler’s view on the source project for
each run.

Object File An object file contains machine code for data structures and algorithms that
results from processing a compilation unit with the compiler.

Library A library is a collection of object files that contains related algorithms and data
structures.

Application An application is a collection composed of object files and libraries that
were linked to form an executable file.

Figure 2.2 contains a schematic overview of how an application program is created
from source code.

file1_libA.src

fileN_libA.src

file1_libB.src

fileM_libB.src

file1_app.src

fileO_app.src

Compiler

file1_libA.obj

fileN_libA.obj

file1_libB.obj

fileM_libB.obj

file1_app.obj

fileO_app.obj

Library A

Library B

Executable
File

OS
Linker

External
Libraries

OS
Loader

Executing
Application

Link TimeCompile Time

Lo
ad

 T
im

e
R

un
 T

im
e

Figure 2.2: Flowchart of a traditional compilation system.

2.5 · Generating Code for Generic Algorithms 17

A typical software project consists of several input files written in the source language
of choice. These files either belong to libraries or the application main program. All the
source files are passed to the compiler. The compiler will generate object files out of these
source files that contain machine code ready for execution on the host machine.

The object files generated from source files * libA.src are combined in library A,
files * libB.src result in library B. A library is usually an archive of the object files with
pointers to their location in the archive as well as an index of the symbols available in the
object files. Often, the index is augmented with metainformation about the symbols, like
access rights. Libraries are created by the compiler itself or by a simple external tool, like
ar on most Unix systems.

Now the executable file for the application program is created. This involves link-
ing the program’s object files together with application specific libraries and external
libraries. The external libraries can be operating system libraries, part of the language
environment or some third party libraries. The linker will replace all symbolic refer-
ences, e.g. in function calls and branches, with the location where the corresponding
definition for the construct represented by the symbol is placed inside the application. So
the linker’s main task is symbol resolution.

The linked application program can now be started by the user. This is done by the
loader. The loader loads the application’s executable file into main memory, sets the
appropriate memory flags and starts the program’s execution by jumping to a defined
position inside the now occupied memory.

A problem that can not be easily attributed to either the linker or the loader is reloca-
tion. Relative addresses in separate parts constituting the application have to be mapped
to unique addresses. Linkers typically assume an address space starting at zero and per-
form relocation based on this assumption. When the loader places the application into
memory, this has to be readjusted if the operating system does not support zero-based
address spaces for every application.

The most elaborate tool in this system is the compiler and we will give some more
details on its operation because the instantiation process must be performed in its prop-
erty. The compiler performs lexical analysis of every source file, followed by syntactical
analysis. Lexical analysis operates on characters and partitions the input into tokens that
correspond to terminal symbols of the source language grammar. The parser that per-
forms the syntactical analysis then creates a syntax tree or parse tree out of the tokens ac-
cording to the source language grammar. Usually the syntax tree is further transformed
into an abstract syntax tree that is better suited for further processing. Semantical anal-
ysis completes the task of the front end. The input is know checked to conform to the
source language rules that go beyond syntactical constraints. This can be the type system
of the language, structuring constraints of the language constructs like position of vari-
ables, and any other kind of context handling. Having performed all these operations,
the compiler has produced an intermediate representation of the input file. This part of
the compiler is called front-end, it is highly programming language dependent.

The back-end is responsible for translating the intermediate representation created
by the front-end into machine code. This is achieved by continuously applying transfor-
mations to the intermediate representation such that the final code will be optimized for
runtime or space efficiency without sacrificing correctness. An important technique in
the back-end is the lowering of the intermediate representation. The result of the front-
end processing is fairly high-level and not well suited for some optimization algorithms.
Therefore, the back-end will replace complex constructs in the intermediate representa-
tion with more simple ones that are closer to the target machine and allow a more con-

18 Chapter 2 · From Concepts to Machine Code

cise formulation of the optimization algorithms. Furthermore, representations closer to
the target machine make it easier to exploit optimization opportunities particular to the
machine architecture. Figure 2.3 shows the described separation of a compiler into front-
and back-end.

Source
Code

Lexical
Analysis
(Lexer)

Object
File

Syntactical
Analysis
(Parser)

Semantical
Analysis

Optimization
Phases

Code
Generation

Front-End

Back-End
Compiler

Intermediate
Representation

Figure 2.3: Traditional internal compiler structure.

The two parts of a compiler, the front-end and the back-end, are perceived as one com-
ponent by the developer, the separation was introduced primarily to enable a modular
compiler implementation. Therefore, they are normally combined in one program.

To conclude our compiler overview the concepts of time in a traditional compilation
system are discussed. They are represented in figure 2.2 by the dashed lines at the lower
and right border.

Compile Time This is the time when the compiler executes. The developer is interested
in short compilation times because this speeds up the development process, but
powerful language features and good optimizers take their toll.

Link Time At link time the linker performs symbol resolution and relocation of the ap-
plication’s object files to produce an executable file.

Load Time This is the period of time from the access of the executable file on secondary
storage to the start of execution of the loaded application. Relocation often takes
place in this phase, too.

Run Time The whole period of time an application performs operations is called run
time. All languages require a more or less sophisticated runtime environment that
supports program execution. The runtime system is responsible for tasks like mem-
ory management, stack frame management or method dispatch based on runtime
type information.

For a more detailed discussion on all aspects of compiler construction refer to text-
books like [AhSeUl86][App98][GrBaJa+00].

2.5.3 Incorporating Instantiation into the Compilation Process

The critical question is how can the instantiation process be incorporated into a tradi-
tional compilation system?

2.5 · Generating Code for Generic Algorithms 19

The first question that arises is if generic algorithms should be type checked before or
after instantiation takes place. In languages like C++ and Modula-3, which have no means
of specifying the requirements on the instantiation types, the only exercisable option is
type checking the instantiated constructs. But this has the negative side effect that error
messages are not at the level of abstraction at which the developer thinks, because only
the symptoms could be diagnosed, not the cause. In a system like SUCHTHAT that is
based on a firm foundation of concepts describing the generic components, their semantic
check is possible before the instantiation. This is preferable, as error diagnostics should
be created as soon in the development pipeline as possible. More important, the error
messages are given relative to generic components, not their instances.

The next problem is the stage at which instantiation should be integrated into the
compiler. For a monolithic application consisting of one compilation unit the answer is
quite easy. First, the front-end checks the input, then all instantiations are performed and
the resulting intermediate representation is subject to code generation. In this scheme,
instantiation could be seen as the last chain link of the compiler front-end. This is feasible
because in a monolithic application generic components are directly instantiated and all
instances are visible to the compiler which are further translated into machine code.

But introducing generic libraries complicates matters. Generic libraries are collections
of uninstantiated generic components. As we already mentioned, no code generation is
possible for these components. Thus, the back-end could not operate. The missing in-
formation are the bindings of type parameters to types and their data structure repre-
sentations, as well as the bindings of algorithms to function signatures. How do current
imperative languages like C++ handle this problem? Generic component libraries have to
be available in source code such that whenever an instantiation is requested in an appli-
cation program the template parameters are replaced by the template arguments and the
instantiated template will be fed to the compiler for type checking and code generation.
This means that linking a generic library in C++ does not only involve symbol resolution
and relocation, but actually invoking the whole compiler for all requested instantiations
in the main application. This is also true for generic library creation if the library in-
stantiates external generic components itself as well as for applications that are build by
linking several object files.

This current practice of linker and compiler interaction has several drawbacks that
we want to discuss now.

Repeated Compilations Every instantiation of an external generic component forces
a complete compile run. Effectively, the same source code if compiled over and over
again which can be a very lengthy operation for generic libraries. The generic library
has to be processed at the highest abstraction level many times, at the source code level.
This is a clear waste of resources, namely development time and processor usage. The
impact of this situation is a well known problem in the C++ community. Adding generic
components to a project, like container and algorithms from the C++ Standard Library,
result in a drastic increase in compilation and linking time.

Multiple Definitions This is another severe problem that has to be handled by existent
compilation systems. All parts of a software project, like libraries and object files, can
contain instantiations of generic components. When the parts are linked together, and
some of these instantiations were identical, the linker will encounter multiply defined
symbols. Consider an instance of the factorial function template for type int that is re-

20 Chapter 2 · From Concepts to Machine Code

quested in two distinct compilation units of an application. The compiler sees only one
compilation unit at a time and therefore machine code will be generated in both resulting
object files. The approach taken in most contemporary C++ systems is to simply remove
multiply defined symbols in the linking phase that resulted from template instantiations.
There are pragmatic approaches to cope with this problem, like the prelinking phase in
C++ compilers based on the EDG front-end [Edi00][Lip96]. Requested instantiations are
recorded in an external repository and distinct instantiations are assigned to object files.
This avoids multiple definitions in one project, but it resurfaces in separate libraries, be-
cause their repositories do not know of each other. Thus, the prelinking approach works
only for a single project or library, not across these boundaries.

Source Distribution The library creator has to distribute its library in source code. For
commercial products this is often a problem because the own source code embodies the
company’s achievement and should be protected from public exposure. Prepackaged
distributions of libraries are also more convenient for the users as they do not have to care
about compiling the library and configuring the development environment. Of course,
open source projects also have their merits. Programmers can check and fix misbehavior
in third party components directly. Furthermore, it leads to a high degree of transparency,
which becomes important with regard to security issues.

We have to draw a conclusion from all these observations: A traditional compiler no
longer meets the demands of a generic programming language because object files and
libraries could not be compiled to machine code if they contain uninstantiated generic
components. For languages like C or nongeneric C++, every compilation unit contains
sufficient information such that it can be translated into an object file which contains
architecture specific machine code. This is no longer true in the case of generic program-
ming languages with a nonuniform data representation. So how should we deal with the
fact that a generic component can be translated into machine code only when its complete
instantiation is known?

The pivotal insight is that the first time a software project with all its dependencies
is available to the compilation system is at link time. At this point the set of all used
instances of generic components can be computed and code generation is possible. There
exists a tension between the time of code generation endorsed by the traditional design
of a compiler, at compile time, and the time when it is first possible in generic settings, at
link time.

2.5.4 Easing the Tension

We propose a different approach to a compilation system for generic programming to
overcome this tension. The code generating back-end should be no longer part of the
compiler. In fact, the compiler should consist of a front-end that performs lexical, syn-
tactical and semantical processing of the source code. This includes overload resolution,
operator precedence parsing, type checking and concept checks. The front-end produces
an intermediate representation which will be used as distribution format for libraries and
possibly application programs. This high level representation of source code contains the
full information available in the source code, but simplified and attained information is
made explicit for fast processing by later stages in the compilation process. In the next
chapter we will introduce the intermediate representation GILF, our generic intermediate
library format.

2.5 · Generating Code for Generic Algorithms 21

Code generation has to be relocated in another part of either the compilation or the
operating system. The best candidates are the linker and the loader. Both have their
advantages and drawbacks. We will consider them in the next chapter also.

The big benefit we gain from splitting the compiler up into two programs is that we
can now integrate the instantiation process in an elegant and uniform way into the com-
pilation system. For that purpose, the instantiation process is also divided into two steps,
instantiation analysis and application. Instantiation analysis is the more complex one and
is performed in the compiler front-end. It has to determine the legality of instantiations,
analyze implicit instantiation requests and collect the possible algorithms and data repre-
sentations for generic components6. Finally, the binding information identified this way
is stored in the intermediate representation.

The back-end’s instantiation step consists of recursively applying the bindings, the
instantiation application. This involves replacing type variables in generic constructs
and generating code for the now instantiated constructs. Looking back at the factorial
example, the processing would be as follows:

1. The front-end reads the source files factorial.sth and test factorial.sth and
performs lexical, syntactical and semantical analysis. This includes type and avail-
ability checking, verifying the legality of instantiating factorial with naturals,
and collecting factorial algorithms and representations for naturals.

2. The front-end generates the intermediate representation of the input. It contains a
representation of the factorial algorithm as well as bindings of the factorial func-
tion call to describe the instantiation in the main test program and the candidate
representations.

3. Assuming a code generating loader, the intermediate representation will be trans-
lated into an executable for the host machine when starting the factorial test pro-
gram. This process includes replacing the type variables inside the representation
of the factorial algorithm with the chosen data structure for naturals.

Figure 2.4 shows the structure of such a compiler that is made up of two separate
programs and how instantiation analysis and application is integrated.

Source
Code

Lexical &
Syntactical

Analysis

Executable
File

Optimization
Phases

Code
Generation

Front-End

Back-End

IR
Semantical Analysis

Instanti-
ation Anal.

Type
Checking

Overload
Resolution

Instantiation
Application

IR

IR

IR

Figure 2.4: Structure of a compilation system for generic programming languages.

6This operation is tightly coupled with overload resolution.

22 Chapter 2 · From Concepts to Machine Code

2.6 Summary

In this chapter we have taken a complete tour through a generic compilation system,
biased towards the SUCHTHAT project. We now want to summarize the three major tiers
of such a system and how they contribute to the intermediate representation.

Specification First we described the procedure to specify generic components with
the algebraic specification language TECTON. Of course, all the semantic checks have to
be performed by the front-end and should not burden the back-end, as the operations
carried out on this level can be very expensive in terms of run time. Some decisions
needed in the concept checking phase are even delegated to off-line archives that store
verified proofs and other knowledge that would lead to unacceptable compilation times;
see [Sch97]. But the specifications introduce functions and types. Their signatures will
enter the intermediate representation in the form of function and type declarations as
they are the common basis to which multiple implementations of algorithms and data
structures are bound.

Generic Algorithms and Data Structures The next tier in a generic compilation sys-
tem is the programming language in which generic algorithms and data structures are
expressed. We restricted our evaluation to languages based on the procedural impera-
tive paradigm because it naturally resembles the functioning of current general purpose
micro processors. Therefore, such languages allow good control over the efficiency of
the compiled program at the programming language level. Languages centered on other
paradigms that require a more sophisticated runtime system can be build on top of im-
perative languages.

Procedural languages are characterized by programming with a state and commands
which modify the state. State is captured in typed variables at different scope levels,
and commands modify these variables and control the program flow based on its current
state. Thus, the intermediate representation contains definitions of algorithms that are
expressed in terms of statements. Data structure definitions describe the memory layout
of an algorithm’s typed variables and constants. An algorithm’s set of local variables and
constants is collected in storage definitions. Notice that the algorithm and data structure
definitions are bound to the generic signatures of functions and types from the specifica-
tion tier and are therefore generic themselves.

Instantiation and Code Generation The last tier is the execution level on a real plat-
form. To arrive at this level the intermediate representation has to provide two facilities.
First, nongeneric, built-in operations and data structures must be supported. These are
needed to actually compute results on the host machine. There should also exist a mech-
anism to convert constants to these built-in data structures, i.e. a feature to set values.

Second, a way to describe instantiations of generic components has to be provided.
This will ultimately reduce generic algorithms and data structures to the built-in enti-
ties, as described in section 2.5.1. We point out the separation of instantiation analysis
and application in figure 2.4. As the back-end should be concerned with instantiation
application only, the outcome of the analysis phase should be stored in the intermediate
language. Therefore, the bindings of the static instantiation parameters of generic com-
ponents to their instantiation arguments should be explicitly included in the intermediate
representation.

2.6 · Summary 23

This tiered view of generic programming is shown in figure 2.5, using the example
discussed in this chapter. The first tier contains selected concepts and central function
signatures. At the top, we have the concept Functional-equation-factorial with the
function F, which is renamed to the factorial operator ! in Real and Semiring-with-
identities. The next tier consists of algorithms implementing the functions, the example
contains no data structures. Finally, these algorithms are instantiated for some data types.
Of course, the number of instantiations is possibly unlimited.

Functional-
equation-
factorial

Semiring-
with-

identities ! : domain -> domain

factorial : domain -> domain

Gamma : positives -> positives

factorial : positives -> positives

gamma_moshier : positives -> positives

uw
or

d int64 flo
at

floatd

! : uword -> uword ! : int64 -> int64 ! : float -> float ! : floatd -> floatd

! : positives -> positives

Real

m
ac

hi
ne

 c
od

e:

in
st

an
ce

s

ge
ne

ri
c

al
go

ri
th

m
s

an
d

da
ta

 s
tr

uc
tu

re
s

sp
ec

ifi
ca

tio
n:

 c
on

ce
pt

s

F : domain -> domain

t

concept
function signature

algorithm

translated algorithm instance

renames

implements instantiates with t

legend

Figure 2.5: Tiered view of the factorial example.

There exist two transitions between the three tiers discussed in this chapter, the first one
from algebraic concepts to generic algorithm and data structure definitions, the second
one from these definitions to machine code. Both pose interesting challenges for generic
programming research. This work concentrates on solving the second one by presenting
an intermediate representation for generic source code and the accompanying compila-
tion system infrastructure.

Chapter 3

The GILF Compilation System

In the previous chapter we provided an introduction to generic programming and identi-
fied the major problems in contemporary compilation systems, especially when used for
generic library construction. Based on the observations made, we proposed an alterna-
tive approach for structuring a compilation system that better meets the demands raised
by generic programming.

Now we will describe the GILF compilation system in more detail. The major func-
tional units are presented, as well as how they interact. The glue between all these units
is GILF, the intermediate language which is targeted by generic programming language
front-ends. Therefore, we start our discourse on the GILF compilation system by looking
at the rationale for our intermediate representation.

3.1 Rationale for the Intermediate Representation

The design of an intermediate representation has to balance the influence of several pa-
rameters. The most important ones are the abstraction level at which language constructs
are expressed, and the structure and encoding in which the information extracted by the
language front-end are stored.

These possibilities in designing an intermediate language for a compilation system
have to be weighed up against the demands of generic programming we identified in
the last chapter. Mainly, these include the capabilities to represent uninstantiated generic
algorithms and data structures, type and function signatures, as well as bindings between
these entities. Summarizing, we state the following design goals for GILF:

Genericity Naturally, this is the mainspring in the design of GILF. The intermediate rep-
resentation should allow storing the information gathered in the instantiation anal-
ysis step of an imperative generic programming language. Furthermore, efficient
instantiation application should be possible from GILF.

Portability Another goal of GILF is to provide a portable platform from which code can
be generated to an arbitrary machine architecture. This is reasonable, because ac-
tual code generation takes place on the target machine, not in the development en-
vironment. The generated code should preferably take advantage of the particular
features available at the target site.

Machine Processability Although information is stored in GILF at a rather high level,
it should make these data easily accessible to the subsequent processing by the

3.1 · Rationale for the Intermediate Representation 25

compilation system. For example, the language front-end parses the source code
and performs operations like associativity and precedence resolving of operator
expressions. It would be a waste of resources if the back-end has to compute these
results again.

Source Language Neutrality This work is intended to examine the basic requirements
of an intermediate representation with respect to generic programming languages.
Consequently, GILF was designed to provide these facilities without dedicating it-
self to one source language. This requires more work when implementing the front-
end, because source language constructs have to be mapped to GILF features. On
the other hand, the generality of ideas may be explored when targeting GILF from
a variety of languages.

Extensibility Finally, GILF in its current form was mainly designed to solve the problems
arising in case of nonuniform datatype representation and manipulation of generic
components. Therefore, other aspects that are common practice in contemporary
intermediate languages were neglected. GILF should be able to provide some of
these features through an extension mechanism.

3.1.1 Abstraction Level

The abstraction level at which language constructs are represented is the most central de-
cision to be made in designing an intermediate representation. The language constructs
are usually divided into the following three categories:

1. Control Flow

2. Operations and Datatypes

3. Data Flow

Control Flow In general, the higher the abstraction level, the more easily a mapping
or transformation from source language constructs to the intermediate representation is
performed. For control flow constructs this means that the intermediate language con-
tains constructs that closely resemble those from source languages, like if instructions
or looping constructs. These conditional control constructs determine the execution of
enclosed statement sequences. An additional advantage of this approach is that no in-
formation present in the source code is lost, e.g. the presence of loops and nesting of
control structures. This enables platform independent optimizations. The drawback of
high-level constructs are that condition evaluation and statement sequences are sepa-
rated. This fact complicates optimizations like common subexpression elimination. Fur-
thermore, the branching structure of the program code is not explicitly available, which
precludes optimizations on this lower level. But good instruction scheduling is vital on
contemporary architectures, which are very sensitive to pipeline stalls due to data and
control hazards (see [HePa96], 3.3ff).

The other extreme is making the branching structure of the source code completely
visible. Assembler languages behave this way, conditional and unconditional branches
determine the control flow of assembler instructions. Control-flow graphs are an estab-
lished way of representing control flow at this low level [AhSeUl86]. These directed
graphs are very general as arbitrary control flow can be expressed with them. Branches
are modeled as edges of the graph, nodes model basic blocks. Basic blocks are instruction

26 Chapter 3 · The GILF Compilation System

sequences that contain no branches or labels, i.e. control flow may only enter at the be-
ginning and leave at the end of a basic block. A problem of control-flow graphs is that
the original source program’s structure is mostly lost, thus the optimizer’s work is hin-
dered. There exist algorithms with linear time complexity in the size of the source code
that build control flow graphs.

Operations and Datatypes Operations can be expressed at different abstraction lev-
els, also. Analogous to control flow constructs, operations can be represented at the level
of the source language. Such a translation means that optimizations at this level will be
independent of the target machine. The problem is that the instructions in the interme-
diate representation will be transformed into several machine instructions, thus effective
optimizations at the machine level are not possible.

Another possibility is storing operations as machine instructions. This has the benefit
that the operation level of the intermediate representation can stay the same during all
processing in the compiler software, because at some point the compiler has to gener-
ate machine code. Most algorithms in optimizing compilers can work effectively at this
abstraction level. The disadvantage of such a representation is the loss of information
inherent in the transformation from source code to machine code. Another problem is
relevant when considering a representation for generic programming languages. The
source code before instantiation of generic algorithms is not fit for representation at ma-
chine code level. Consider the following C++ code snippet, which shows a function f
that contains two lines of code at some point in its body.

template <typename T>
void f() {
// ...
T i; // [1]
i = i + 1; // [2]
// ...

}

Line 1 declares a variable i of the type parameter T, which will be increased by one
in line 2. The addition operation could resolve to a function call if type T will be bound
to a user defined datatype, or to a machine operation if it is bound to a built-in datatype
like int. Special constructs would be needed in a machine level representation of generic
code. Machine code is of course highly target machine specific.

A variant of machine code representations at an even lower abstraction level are regis-
ter transfer languages 1. The operations at this level are very simple microcode operations
of a hypothetical machine, real machine operations usually perform the work of few mi-
cro operations. A register transfer language as intermediate representation is portable,
because the micro operations can be implemented by most real architectures. Problems
of this low-level representation are the larger required memory space, compared to the
other mentioned representations, and the need for a pattern matcher that combines micro
operations to machine code.

The representation of datatypes can be either close to high-level programming lan-
guages, that means the records, arrays etc. are representable, or machine datatypes are
used directly. Again, in a generic setting only instantiated datatypes can be represented
with machine datatypes.

1The GNU Compiler Collection (GCC) [Sta01] uses a register transfer language as its intermediate repre-
sentation.

3.1 · Rationale for the Intermediate Representation 27

Data Flow Finally, we have to consider data-flow representations. The knowledge at
which point variables and temporaries change their values through assignments is vital
for compiler optimizations. For example, if a variable is assigned a value that leads to a
condition in an if statement that will always yield the boolean value false, and data-flow
analysis shows that this variable is never changed before the conditional evaluation, the
dead code can be eliminated effectively. There are two possibilities to design an interme-
diate language with regard to data-flow, multi-assignment and single-assignment interme-
diate languages. Multi-assignment follow the semantics of typical imperative languages
closely as they allow a variable to be assigned different values multiple times during
program execution. Most algorithms based on multi-assignment languages operate on
basic blocks. Traditional data-flow analysis works with bit-vectors, which are computed
for basic blocks. A basic block’s bit-vector contains information like the availability and
liveness of its variables.

More recently, static single-assignment (SSA) form [CyFeRo+91] has been established
as data-flow representation in optimizing compilers (see [Mor97] and [Muc97]). The key
property of SSA form is that each variable is assigned a value only once. This is achieved
by renaming a variable from the source language every time it is assigned a new value. A
simple examples illustrates this transformation. The left hand side shows an instruction
sequence in multi-assignment form, the right hand side shows the the same code in static
single-assignment form:

i := 20 i1 := 20
j := i + 1 j2 := i1 + 1
k := i + 10 k3 := i1 + 10
i := k * 2 i4 := k3 * 2
x := i + 1 x1 := i4 + 1

The result is a program that has almost functional form [App98b]. Analysis of the
intermediate representation is simplified if it is in SSA form, therefore development of
optimization algorithms is facilitated.

In the previous chapter we determined the essential constructs that should be part
of an intermediate representation. It became clear that a high-level representation is de-
sirable, as we have to store uninstantiated algorithms. A low-level representation would
have to contain special high-level constructs, mostly eliminating the advantages of a low-
level representation. Therefore, we favored an intermediate representation that is closer
to high-level source languages than to the target machines. This way we have a portable,
target independent format that allows us to perform high level transformations. This
is important for generic programming, as depending on some of the generic function’s
input parameters, which can be the instantiation’s types or actual values of the call, we
may want to switch between different algorithm implementations of the same function.
For actual code generation, instantiated algorithms and data structures are lowered to
some format that is more suitable for an optimizing code generator.

3.1.2 Structure

After deciding to use a high-level representation for GILF, based on constructs found
in imperative languages, the next pending decision is how to structure the information
collected in GILF. There are two main constituents that make up the stored information:

• Abstract Syntax Tree

28 Chapter 3 · The GILF Compilation System

• Symbol Table

The most natural structure for these information in compiler construction is a tree-like
representation. Source code has an implicit hierarchical structure that is easily mapped
to a tree. For example, procedures contain instructions, which in turn contain expres-
sions, which are made up of variables, constants and function calls. Arbitrary additional
data, usually called annotations, can be stored in the tree data structures, which enriches
the pure syntax tree. Most compiler construction textbooks devote considerable space to
the treatment of syntax trees and related data structures [AhSeUl86][App98][GrBaJa+00].
Global and local symbol tables can simply be treated as special nodes in a tree. A tree rep-
resentation can contain all the information present in the source code. Figure 3.1 shows a
short code sequence and its abstract syntax tree representation.

condition

if statement

else bodythen body

assignment assignmentexpression

<

x 0

y expr

-

x

y x

if x < 0
then

y := -x
else

y := x

Figure 3.1: A statement sequence and its corresponding abstract syntax tree.

Program source code can be linearized and represented in tabular form without loss
of information. This approach is pursued in the Oberon-3 system, which is based on SDE
[Fra94], the semantic dictionary encoding. It has similar properties as tree representa-
tions.

Another popular representation are abstract stack machines (see [AhSeUl86], 2.8).
Abstract stack machines provide primitive instructions for arithmetic, stack manipula-
tion, and control flow. These operations operate almost exclusively on operands from
the stack, e.g. branches take the relative offset from the stack. Expressions are converted
into postfix notation, which can be translated into stack machine instructions straightfor-
ward. Notice that the original source code has to be transformed to be representable as
stack machine, and some information is lost in this process, for example expressions have
to be flattened in order to fit the evaluation model of stack machines. The most prominent
contemporary example for a stack-based intermediate language is the Java Virtual Ma-
chine [LiYe99]. Stack machines are easy to interpret, because of the simple instructions
and the unfolded expressions. Unfortunately, they do not fit very well the register-centric
evaluation model of todays RISC architectures. Thus, for effective optimizations parts of
the already performed transformations on the source code have to be undone.

A representation closely related to abstract stack machines overcomes this problem,
namely abstract assemblers. An abstract assembler tries to model the most important as-
pects of a wide range of popular processor architectures. Then, the abstract code should

3.1 · Rationale for the Intermediate Representation 29

be easily translated into real assembler dialects. Projects related to an universal com-
puter oriented language (UNCOL) date back to the fifties [Con58]. The incentive of these
projects was to mitigate the problem in compiler construction of writing n·m compilers, if
for n source languages m assembler languages have to be written. With a abstract assem-
bler as intermediate representation, this is reduced to n + m compilers, because for every
assembler only one back-end has to be written that translates from the abstract assembler,
which is targeted by the front-ends. Most optimizations work on the abstract assembler
as it models real processors adequately. Interpretation is more complex than with stack
machines. Recently, there is a trend towards enriching assembler dialects with high-level
language features and supporting strong static typing [MoCrGl+99] [ECMA01].

GILF has a hierarchical, tree-like structure. This makes it accessible both for compu-
tational purposes and for the human reader. Furthermore, we wanted to retain as much
information as possible from the original source code in spite of being source language
neutral, which is feasible in a tree notation.

3.1.3 Encoding

An intermediate language that is also used as distribution format like GILF has to con-
sider its external as well as its internal representation. The internal representation is sub-
ject to the GILF implementation, which is described in chapter 5. There are two general
alternatives to encoding the external representation of GILF:

• Binary Encoding

• Textual Encoding

A binary encoding is more compact than its textual counterpart. SDE, later on called
Slim Binaries [FrKi96], shows that such an encoding can be significantly smaller than exe-
cutable machine code. This is of importance, because nowadays mobile code is of increas-
ing relevance. Mobile code is transmitted over networks and executed on the receiving
target machine, like browser applets. In this cases, a tight encoding saves network re-
sources. The drawback of a binary encoding is that it is not human readable without
dedicated tools.

This is the primary advantage of a textual external representation. A large set of
available tools can be used to inspect and modify textual formats and the content of a
text file can be grasped by a human reader directly. Recently, a lot of work has been
invested into XML [XML00], which is a textual tree representation at its core. So we
adopted XML as the representation format for the prototype system. All XML capable
browsers can be used to display it and the wide range of available software, like parsers,
class libraries, and converters, is waiting to be exploited. The linking capabilities of XML
make it an ideal choice for a library format, different parts of the library’s components
can be referenced inside the very file, inside the file system, and even on the world wide
web. An intermediate representation formulated in XML has one more powerful feature,
we get platform independence at the external representation level as XML is based on the
Unicode Standard [Uni00]. For more details on XML, refer to section 4.1.

The GILF system was designed to handle more than one encoding of the external
intermediate representation. The current prototype deals only with the XML-based GILF
encoding, called XGILF. But the system is prepared for adding other encodings without
major rewrites. A more thorough discussion of this feature is given in chapter 5 and
appendix B.

30 Chapter 3 · The GILF Compilation System

3.2 Infrastructure of a GILF System

We have motivated and outlined the content of a GILF entity, which can contain either
library or application code. The fact that no machine code is stored inside GILF entities
necessitates drastic changes to a system’s infrastructure, as discussed in section 2.5. Now
we will present the complete infrastructure for a compilation and runtime system build
around the GILF intermediate representation. Figure 3.2 displays a general overview of
such a system, and we will explain the specific components in the next sections.

Language-Specific
Front-End

Code Generating
Linker and

Loader

Source File
(main)

Runtime
System

Optimization
System

GILF
(a_main)

Algorithmic
Database

Native Code
Cache

Source
File

Source
File

GILF

GILF

Code Adaptor

SuchThat
Views

Executing
Application

Garbage
Collector

Debugger

compile time runtime

runtime interfaces

GILF interfaces

Algorithm
Selection Unit Profiler

...
SigAdj

Figure 3.2: A general overview of the complete infrastructure of a GILF-based compila-
tion and runtime system.

3.2.1 Front-Ends

The language specific front-ends perform syntactical and semantical analysis, augmented
by instantiation analysis in the case of a generic programming language. The front-end
outputs GILF for all processed input. Currently, a SUCHTHAT [Sch96] front-end is under
development. GILF was designed to be language independent, but it provides a conve-
nient target as intermediate representation for SUCHTHAT. Most SUCHTHAT constructs
map directly to GILF constructs. Views, another generic programming language invented
at our group [Gas01], will also consider the GILF system as back-end. Targeting GILF from
a variety of generic front-ends will help to refine our intermediate language.

Instead of feeding this intermediate representation directly to the code generating
back-end, we use it as the on-disk representation of libraries and executables. Therefore,
the work performed at compile time is finished after this step.

Programming languages have different conventions for denoting the function that
starts the application program’s execution. In C and C++, a function called main has a
specified signature and is called after initializing the runtime system. In GILF, execution
starts by calling the algorithm denoted by the identifier a main that resides in the compi-
lation unit u main. For more details on identifier naming, refer to the XGILF specification
given in chapter 4. A GILF entity may contain both library and application code, but only
GILF entities that contain the mentioned main algorithm may be subject to execution. In
figure 3.2, one source file and one generated GILF entity are marked as containing the
program entry point main.

3.2 · Infrastructure of a GILF System 31

3.2.2 Code-Generating Linker and Loader

The code-generating linker and loader is one of the most important components of a
GILF based system. It executes whenever a user starts an application program on the
deployment machine. Figure 3.3 shows a detailed view of the code-generating linker and
loader.

Deserializer GILF
(internal repr.)

Code
Generator

Instantiation
Manager

Linker

GILF
(external repr.) Native Code

Figure 3.3: Detailed view of the code-generating linker and loader.

The process always starts with an external GILF representation. This can be simply
files on the hard disk, but also a system-wide XML database that stores compilation units
in XGILF, a http connection or any other input stream. The input stream is processed
by the deserializer that turns the external into the canonical internal representation. The
internal representation is inherent to the GILF system implementation, all further compu-
tations use this form. Currently, a deserializer for XGILF is implemented.

The next step is calling the code generator on the algorithm with the identifier a main,
which initiates the code generation of the application. If all symbols are available and no
generic components are present, native code is produced. Any unresolved symbols lead
to calls to the linker, which will access the needed GILF entities and add the desired units
to the internal representation after deserialization. The instantiation manager intervenes
if a generic algorithm or data structure is encountered. Then, the instantiation manager
checks if instantiation application has already occurred for the requested instance. In this
case, it simply skips any processing and the code generator proceeds with the next con-
struct. If the instance is not available, recursive instantiation application is performed.
This involves resolving the present bindings and creating an internal representation of
the instantiated generic component, which will be further processed by the code genera-
tor.

The code-generator of the prototype implementation does not generate native code
directly, but rather takes the indirection of first producing C++ code. The C++ code is
restricted to basic features, it acts as universal assembler language as proposed by Schupp
in [Sch96]. The disadvantage of this approach is that program startup time is increased
considerably. On the other hand, we gain platform independence at the target machine,
the code generator simply uses the C++ compiler present on the system which emits code
for the correct processor architecture. Figure 3.4 shows the prototype’s architecture.

gilf2code C++ Source System C++
Compiler Native Code

Figure 3.4: Structure of the code-generator’s prototype implementation.

32 Chapter 3 · The GILF Compilation System

We can produce machine code either at link time or at program startup time. In the
case of dynamically linked libraries these two choices are virtually the same. We have
exercised the startup option for several reasons. Generating code at link time has the
advantage that the user does not perceive the time consumed by code generation. On the
other hand, we loose the property of platform independence, as native code is produced.
Furthermore, optimizations take place on the development machine, not the deployment
machine. Also, one is restricted to using statically compiled application programs when
generic components are present. But the problem with generic libraries is the main theme
of this work, and we do not want to resort to monolithic applications with all library code
compiled in at link time.

Thus, the operating system loader’s task of reading an executable into memory and
starting its execution is augmented by code generation. The code generator becomes a
runtime component and turns into an operating system service. For proprietary systems,
like Windows NT and various Unix flavors, one does not have the power to extend the
system loader. In order to avoid this problem, we create two files for an application
program. The first one is the GILF file, holding all semantic information generated by
the front-end. The second one is a system conforming executable that starts our code
generator.

Let us ponder about the code generator some more. Michael Franz sketched a similar
system in his dissertation [Fra94], which was later implemented and publicized [FrKi96]
[KiFr99]. His incentive was to provide the foundation for a component based operating
system, he was not concerned with the instantiation problem of generic components.
He advocates a fast, consequently unsophisticated code generator, because the user will
not accept perceivably prolonged startup times. Of course, code quality suffers in this
approach upon the first launch of a program. We cope with this problem by introducing a
code cache, which holds the latest version of a translated GILF entity. Now we can afford a
long compilation run, which applies the whole range of traditional optimizations. Notice
that for a main program, we can fill the cache immediately after the compiler front-end
emitted its output2. This corresponds to code generation at link time.

Another option for code generation that was not mentioned yet is just-in-time (JIT)
compilation. Both the Java Runtime Environment (JRE) and the Common Language Run-
time (CLR) [MeGo01] employ JIT compilers. The cost of compilation is spread across the
whole run time of the application, as at the first call of a function code is generated.
Another advantage of JIT compilers is that code is generated only for functions that are
actually called.

3.2.3 Native Code Cache

The native code cache was mentioned in the preceding sections. We will discuss it in
more detail now.

The prolonged startup time of application programs can become a problem, especially
if a fully optimizing compiler is run to create the native code each time. An established
solution to this kind of problem, where the same computations are performed multiple
times, is caching. We have decided to implement a native code cache at the deployment
machine. There are two main aspects that we have to deal with when caching compiled
GILF code:

2This policy makes only sense if the application is run on the same machine on which it is developed and
compiled.

3.2 · Infrastructure of a GILF System 33

1. Caching code for applications and libraries.

2. Caching local and system-wide code.

The first item points to a behavior specific to generic programs. In a traditional envi-
ronment, the application code can be compiled on its own, as well as the libraries. When
dynamically loading a library, various applications can share the same code of this li-
brary, as the code is the same for all applications. Both Unix and Windows operating
systems support dynamic libraries in this way, on Unix systems they are called shared li-
braries using a .so extension, on Windows systems they are called dynamic link libraries
using a .dll extension.

This is no longer the case for generic code. An application can have private data
structures and request instantiations of generic components that reside inside a library
with these data structures. It makes sense to store these instances with the application
only, as no other application will ever make us of these instances. On the other hand,
instances that use built-in types or that are part of the GILF core library could be shared
among applications. Therefore, one not only has to decide if a compiled instance should
be cached, but also if the native code should be stored with the application or the library.

The next issue is where to store the cached code. For system libraries and applications
it is reasonable to store often requested and generated instantiations in a system-wide
cache. This is no longer true for code that is executed solely by one user or application.
The native code cache should be separated into local and system-wide parts.

The instantiation manager is the component in the code generator that deals exclu-
sively with the aspect of genericity that is left to the back-end: instantiation application.
The simplest strategy in dealing with instantiation requests is to apply the provided bind-
ings of static instantiation parameters to arguments and generating code for the instan-
tiated generic components. This is what some C++ compilers do, and it leads to long
compilation runs and other problems, as observed in section 2.5.3. As just explained, we
try to alleviate this observed behavior by caching generated instances for later retrieval
in disk caches. Further on, the instantiation manager keeps an internal cache with the
instantiations requested for the current compilation unit. The complete cache hierarchy
of a GILF system is depicted in figure 3.5.

Internal Cache

User-specific Cache
Application Cache Library Cache

System-wide Cache
Application Cache Library Cache

Native Code Cache

in main
memory

on disk
storage

Figure 3.5: The hierarchy of the native code cache in a GILF system.

The internal cache is managed by the code generator and the instantiation manager.
After completing the compilation of the current unit, the information in the internal cache

34 Chapter 3 · The GILF Compilation System

is propagated to a cache manager that handles the user-specific (local) and the system-
wide cache. The internal cache will be filled from the other caches during the code gen-
eration phase, whereas the disk caches are updated with the content from the internal
cache after code generation.

Systems that employ a cache have to deal with the problem of data integrity of cached
items. This is also a concern for GILF’s native code cache. Whenever a GILF file changes
on disc, the native code cache may become corrupt, thus loosing its integrity. A simple
strategy to overcome this problem is embedding a time stamp into the GILF file that is
also present in the cached native compilation. Then, comparing the time stamps of the
original GILF file and its cached compiled variant will trigger a recompilation on mis-
match. This simple strategy has the disadvantage that a lot of unnecessary recompilation
will be performed because of trivial changes in the GILF files. More elaborate techniques
will be considered in future GILF system versions.

3.2.4 Runtime System

We have progressed to the stage where the application program is executing. At this
time the application communicates with the GILF system only through runtime system
interfaces. The runtime system consists of three major parts:

• Garbage Collector

• Debugging System

• Profiler

3.2.4.1 Garbage Collection

Introduction Garbage collection relieves the programmer from manual memory man-
agement. This is good as manual memory management is error prone and not necessarily
results in efficient execution of the resulting programs. For modern computer program-
ming languages, garbage collection is becoming increasingly important, as language fea-
tures like object orientation and threads make it difficult to track memory explicitly in
complex programs. Not coincidentally, current programming environments like the Java
Virtual Machine and the Microsoft Common Language Runtime [Ric00] both feature an
integrated garbage collector, which is used as the memory management mechanism in
the accompanying languages Java and C#, respectively.

For a better understanding of this issue, we will give a short introduction to memory
allocation in programming languages. Memory is available in programming languages
in three flavors:

Static Memory Variables residing in static memory occupy the same memory location
throughout the whole execution of an application. The compiler has to generate
code that is executed by the runtime system to initialize and clean up static memory,
depending on the semantics of the programming language.

Stack Memory Parameters of procedure and function calls are pushed onto the stack,
as well as the return address and sufficient space for local variables. This allows
recursive calls, which is not possible with statically allocated memory.

3.2 · Infrastructure of a GILF System 35

Dynamic Heap Memory Heap memory may be allocated at any time and in any order
during the execution of a program. This allows dynamic allocation of arbitrary
data structures that may outlive the function in which they were allocated. But
this increased flexibility comes at the cost of more complex management of heap
memory.

The common interface for manual heap memory management consists of two functions,
one to allocate memory and one to free the formerly allocated memory. These functions
may either be part of a runtime library or inherent to the programming language. For
example, Pascal has the new and dispose keywords, C++ has new and delete, whereas C
resorts to the library calls malloc, realloc, and free. The programmer has to pair these
calls meticulously in order to avoid memory leaks.

Garbage collection is responsible for automatically reclaiming dynamically allocated
heap memory that is no longer used or reachable in the application. Thus, the basic
interface for a garbage collected heap consists solely of an allocation function. In Java,
objects are allocated on the heap with new statements and the garbage collector takes care
of recycling memory.

There are two major benefits of garbage collection. First, program robustness is in-
creased as errors due to prematurely released memory3, as well as memory exhaustion
aborts due to memory leaks are prevented. Second, as the programmer does not have to
care about memory management details, these concerns do not influence the design and
interfaces of software systems. Thus, the abstraction level at which systems are expressed
is raised, which is a main goal of software engineering and programming language de-
sign.

Garbage collection plays an important role in computer algebra and symbolic com-
putation systems, as applications and algorithms in these systems tend to run for a long
time and memory usage is pushed to its limits. The Configurable Memory Manage-
ment (CMM) system [AtFlIg98] was developed in the context of Posso, a project aimed
at advancing tools and software for symbolic computation. SAC-2 [CoLo90] and Saclib
[HoNeSc95], two computer algebra libraries, both successfully employ a garbage collec-
tor. SUCHTHAT is also intended to work in an garbage collected environment.

All these facts contributed to the decision to integrate a garbage collector into the GILF
system.

Basic Techniques There are three fundamental techniques for implementing garbage
collection, which we will sketch briefly:

1. Reference Counting

2. Mark-Sweep Garbage Collection

3. Copying Garbage Collection

Reference counting [Col60] is based on the idea that every cell has an associated field
that counts the number of active references to the cell. Whenever another cell newly
refers to the cell or removes its reference, the invariant has to be maintained that the
reference count equals the number of active references to the cell. A cell is reclaimed if
the cell’s reference count drops to zero. These cells are put back on some kind of freelist.

3These kind of errors are usually refered to as the dangling pointer problem.

36 Chapter 3 · The GILF Compilation System

Reference counting is called a direct garbage collection method as no longer reachable
cells are returned to the freelist immediately.

One advantage of reference counting lies in the simplicity of the algorithm. Also,
the cost of garbage collection is distributed evenly throughout the program’s execution,
which makes it well suited for real-time and interactive application. Last, the locality
of reference of the application is widely preserved, which is an important aspect for to-
days processor architecture, because cache misses and page faults have a deep impact
on performance. On the other hand, reference counting has severe drawbacks. The pro-
cessing overhead introduced for tracking the reference count at every pointer update is
significant. Furthermore, cyclic data structures can not be reclaimed with the traditional
reference counting scheme. Finally, reference counting implementations are quite fragile,
as simply omitting one adjustment of the count field can lead to errors that are extremely
hard to detect.

The other two garbage collection techniques are called indirect as they rely on trac-
ing the heap at certain intervals. Reclaiming unreachable cells is deferred to dedicated
garbage collection phases.

The mark-sweep algorithm works as follows. Allocation of cells is accomplished by
a lookup into a freelist. Garbage collection starts when the freelist is exhausted, i.e. the
request for a cell fails. Processing in the application is no longer possible until the garbage
collector finishes. The mark-sweep collector is divided into two phases, a mark and a
sweep step. In the marking phase, a global traversal of all live objects is performed. It
starts in the root set, which is the set of all cells that are directly available at the point
at which the garbage collector was invoked4. These live cells are marked as active with
a mark-bit, as well as the cells that are recursively accessible from them by following
pointers. The recursion ends as only unmarked cells are examined. After the mark phase
is finished, all unmarked cells are considered garbage, as they are no longer reachable
from the application. Now, the sweep phase starts which linearly scans the heap and
puts all unmarked cells back into the freelist, and clears the mark-bit on active cells.

The mark-sweep collection has two major advantages over reference counting. Cycles
are handled naturally, no special treatment of these data structures is necessary. In addi-
tion, pointer manipulation is completely free of any overhead, thus overall performance
is superior to reference counting. On the other hand, program execution is halted during
garbage collection, which disqualifies it for real-time and most interactive applications.
Notice that during the sweep phase, the whole heap is visited, not only the active cells.
Fragmentation of the heap is also a problem, especially when variable sized cells are al-
lowed. This problem is also present in reference counting and manual memory managers
that employ freelists.

Finally, we present the copying garbage collector. It addresses the fragmentation
problem and also has very fast allocation characteristics. The copying algorithm sepa-
rates the heap into two semi-spaces, called fromspace and tospace. Fromspace contains
the current data and tospace contains abandoned data. The collector starts when allo-
cation of a new cell fails because fromspace’s free storage is smaller than the cell’s size.
Then, the copying collector starts traversing the active cells. Every cell that is visited
will be copied from fromspace to tospace. Copying of active cells starts at the bottom of
tospace and progresses sequentially, thus defragmenting the heap in every copy phase.
Special care has to be taken in order to copy cells that are part of shared and cyclic data

4These cells are typically local and global variables. They reside in registers, on the stack, and in static
memory.

3.2 · Infrastructure of a GILF System 37

structures only once. This is achieved by copying forwarding pointers over the beginning
of already copied cells in fromspace. A recursive version of copying garbage collection
must deal with the problem of stack overrun. Cheney developed an elegant iterative
version that uses only two pointers [Che70].

The copying algorithm has two main advantages over the mark-sweep algorithm.
First, it visits only the active cells, thus its asymptotical complexity is better compared
to mark-sweep algorithms, whose sweep phase has to scan the whole heap. Moreover,
the heap is defragmented and thus allocation is extremely fast, it is performed by simply
increasing the free pointer in current fromspace. The caveats are that active cells have to
be copied, which can be expensive for large objects. Also, the address space required for
copying garbage collection is doubled, as it requires two equally sized heap semi-spaces.

For all three presented techniques, many improvements were realized and publicized.
For example, incremental and generational tracing techniques reduce stop periods of
these collectors. For a thorough presentation of garbage collection, refer to [JoLi96].

Garbage Collection for GILF Nishanov and Schupp examined the special needs of
garbage collection in the context of generic libraries for the case of C++ [NiSc01]. We
considered two aspects of their work. On the one hand, we had to think about the impli-
cations of genericity on garbage collection in general. On the other hand, characteristics
of garbage collection in C++ had to be evaluated because we use it as target-language in
the GILF prototype.

C++ is an imperative general purpose language which expects memory management
to be handled explicitly. The layout of objects and runtime components like the stack and
heap are not known to user programs. Built-in datatypes are represented by machine
words, they are not boxed. A garbage collector for C++ is just another user program with
no special support by the compiler. These characteristics lead to problems, as the collec-
tion techniques described above are type accurate, that means they assume knowledge
about the position of pointers in data structures and the heap layout.

Conservative garbage collection is the method of choice to handle the problematic cases.
It does not rely on cooperation of the compiler or any knowledge of the memory subsys-
tem. It has to cope with two fundamental problems:

1. Finding the Root Set

2. Pointer identification

The Boehm-Demers-Weiser collector [BoWe88] is credited for both providing routines
for root set finding on all major platforms as well as for deriving efficient heuristics for
pointer identification. The collector has a C and a C++ interface. The C interface replaces
calls to malloc, the C++ interface calls to new. The efficiency of the collector can be in-
creased if allocation of objects that contain no pointers are made through a specialized
call of the general allocation function. The collector employs a mark-sweep allocation
with sweeping spread among allocation calls (so-called lazy or deferred sweeping).

An alternative to using system-dependent heuristics for root finding on the stack, in
registers, and static areas is requiring the user to provide pointer finding routines such
that pointers in heap-allocated data structures are identified accurately. Objects resid-
ing in the heap are now subject to a copying collection algorithm. These collectors are
called mostly copying garbage collectors, one well known example is the Bartlett collector
[Bar88][Bar89], which was developed for usage in the back-end of a Scheme compiler.

38 Chapter 3 · The GILF Compilation System

So how does genericity complicate matters? The first problem identified by Nishanov
and Schupp is end-of-object pointer identification, as these pointers are often used in
generic libraries as iterators that mark the end of sequences [MuDeSa01]. If these point-
ers are not updated after their related sequence was copied, checks for the end of the
sequence will fail. The Bartlett collector suffers from this kind of failure. The Boehm-
Demers-Weiser collector is not affected as it performs no copying of data structures.

The second problem of generic data structures stems from the fact that its members’
actual types are not known until instantiation time. Therefore, up to this time the knowl-
edge is not available which of the structure’s members are pointers. This effectively dis-
ables the optimized call to the atomic allocation function of the Boehm-Demers-Weiser
collector. For large objects like matrices or vectors that hold no pointers this can lead to a
significant efficiency degradation.

Both problems are solved in TGC, the collector presented by Nishanov and Schupp.
GILF can use both TGC and the Boehm-Demers-Weiser collector. The latter one even
with optimized calls for atomic objects, as at instantiation application time the whole
type information is present and the correct version of the allocation function call can be
synthesized. Once again, the design of the GILF compilation system solves a problem
present in current compilers for generic languages.

The GILF Interface Finally, we want to present the interface to dynamic memory allo-
cation in GILF which is part of the GILF core library (see appendix C). It is given in XGILF,
the XML-based external representation of GILF. For a thorough discussion of this format
see chapter 4.

<!-- Dynamically allocate memory from the heap for a single object. -->
<function id="u_func.f_allocate" name="allocate">
<type-params count="1"> <type-param id="tp_0" name="T"/> </type-params>
<params count="1">
<param pass="out_ref!" id="p_0" name="new_obj">
<static-param-dsg ref="tp_0"/>
</param>

</params>
</function>

The function declaration introduces the identifier f allocate that resides in the com-
pilation unit u func. For a given type parameter tp 0 it returns a reference to the newly
allocated memory, accessible are parameter p 0. If the request for memory could not be
fulfilled, even after running the collector, a null reference is returned.

3.2.4.2 Debugging System

Another important aspect of every compilation system are the debugging facilities. De-
bugging rests primarily on two conceptual pillars. First, a programming language should
help to avoid writing erroneous code before it is executed at all. Second, if the static se-
mantics of the program have been checked by the front-end and code was generated by
the back-end of the compiler, runtime error finding should be supported by powerful
debugging mechanisms. We will briefly discuss both aspects, with a special emphasis on
the needs of generic programming.

Static Debugging Strong typing has increased the reliability of computer programs.
The modification of variables is possible only in a controlled manner as all methods that

3.2 · Infrastructure of a GILF System 39

change state are validated by the type checker. Almost all modern programming lan-
guages like Ada95, C++, C#, and Java feature a strong static type system. In chapter 2 we
motivated the necessity of enriching the type checks in generic programming languages
with semantic concept checks, thus allowing only valid instantiations. SUCHTHAT offers
one of the most extensive static type checkers available today.

Notice that in order to be of significant benefit, error messages reporting semantic
contract breaches have to be displayed in a accessible form. C++ compilers are notorious
for cryptic error messages related to instantiation problems. There even exist software
filters that try to make the error messages generated by popular C++ compilers more
readable [Zol01]. Compilers based on the EDG front-end [Edi00] show that if some care
is put into this aspect of the compiler its usability is increased. However, the general
problem that no semantic checks are performed during instantiation in C++ remains.
Programmatic approaches try to palliate this shortcoming [SiLu00].

Dynamic/Runtime Debugging Once the source code passes all static checks, debug-
ging is concerned with helping the programmer to find errors in the application logic
expressed in algorithms. Methodology to handle this hard problem has been in focus
of current research, as debugging tools did not keep pace with the overall evolution
of programming languages. Eisenstadt undertook a statistical examination of the prag-
matic problems of debugging, how they are treated and the root causes [Eis97]. The two
main difficulties in tracking down programming errors are the cause and effect chasm
of subtle bugs as well as the inability to apply appropriate debugging tools. The most
commonly used approach to finding bugs is data gathering. This can be as simple as in-
serting print statements, but more elaborate techniques are becoming available. Most in-
dustrial strength compilers provide a dedicated tool for stepping through the executable
and watching variables’ values, e.g. gdb, the GNU Debugger. Software visualization
[BaDiMa97] is employed to grasp the behavior of the executing program on a more ab-
stract level. Also, tools for monitoring states of the executing program at various time
points or even complete execution histories are being developed, enriched with pre- and
postcondition checks or query expressions [Len00] [Jah00] [BoJo97]. Another approach
is comparing different versions of programs, such that bugs introduced by adding or
changing parts of correct software can be located more effectively. This can be done by
extensive regression testing [GrHaKi+01], thus erroneous units will be identified by com-
parison of test sets, or even by automatically comparing changed source code [Gro97].
Finally we want to mention the problem of debugging optimized code. As modern opti-
mizers aggressively reorder code a mapping of source code to optimized machine code is
often not possible. Alternate means for debugging such optimized code are needed, for
example interpretation of intermediate code [Elm97] in the debugger.

Debugging Support in GILF How does the GILF philosophy match with the needs of
debugging tools? GILF entities contain entries that allow source code fragments to be
attributed to GILF constructs (see chapter 4 for details). This is the low level support
necessary to allow debuggers to display reasonable output. Furthermore, as GILF is in-
tended to be used as back-end by various front-ends, some naming information might be
lost in the transformations performed by the front-end. GILF allows this information to
be propagated as properties in the intermediate representation.

Extensive and elaborate error messages are to be generated by the front-end. The in-
termediate representation will only make sanity checks on the binding information cre-
ated by the front-end, such as checking the number and kind of instantiation parameters.

40 Chapter 3 · The GILF Compilation System

These checks and the resulting error diagnostics are roughly at the level what C++ com-
pilers generate. This is appropriate for a back-end, which should get correct intermediate
code from the front-end.

In general, code generation at load time, as present in GILF, has several advantages
for building debugging tools. Instrumentation of code can be applied selectively to the
intermediate representation, and only if debugging is actually wanted. For example,
new compilation units could be marked as subject for extensive monitoring such that
defects in these new components could be identified easily. After a given time period
or forced by the user, the instrumentation could be removed at the next program start,
resulting in improved runtime performance. Contrary, the compilation system could add
debugging and monitoring code to compilation units that resulted in errors. The problem
of debugging optimized code could be solved by generating nonoptimized code for units
or even functions that will be run through a debugger. Overall, the GILF compilation
system provides a good basis for implementing advanced debugging tools.

3.2.4.3 Profiling System

The last component of the runtime system is the profiler. Profiling techniques are in-
creasingly important in assisting modern optimizing compilers, because good runtime
performance can be achieved only by generating code with good spatial and temporal
locality [HePa96]. An inappropriate mapping of source code to machine code can result
in loss of runtime performance. Profilers aid in the process of finding the application’s hot
spots and performance bottlenecks. We will briefly describe profiling techniques, as the
profiler is the scaffolding of the optimization system described in section 3.2.5. Profiling
techniques can be divided into three main categories:

1. Sampling

2. Instrumentation

3. Hardware Performance Counters

Sampling The profiling data collected by a sampling profiler consists of samples of the
processor’s program counter. The program counter’s value is stored each time the sam-
pling routine is invoked either by a timer interrupt or an interrupt caused by an overflow-
ing hardware counter. Sampling is a statistical approach to gathering profile data. There-
fore, it cannot perfectly monitor a program’s execution and control flow. Certain execu-
tion patterns can result in skewed profiles. On the other hand, sampling can be applied
to code without recompilation and it does monitor user and system level code. Further-
more, it causes only a small amount of overhead, typically around 1-3% [AnBeDe+97],
and thus can be applied to computational intensive and long running production sys-
tems. The only concern here is to control the amount of profiling data generated.

The gathered data can be used to attribute the relative time spent in procedures,
source lines or machine instructions. Additional, it is possible to identify instructions
that are sources of pipeline stalls. In general, tools are needed to help evaluating the data
record produced by the profiler.

Instrumentation Profilers based on instrumentation utilize special binary versions of
the programs under observation. The code image contains special instructions that mon-
itor the programs execution, for example the time spent in procedures, the path taken

3.2 · Infrastructure of a GILF System 41

during execution and so on. This is achieved with counters that are manipulated at pro-
cedure or basic block entry and exit points, either hardware supported or completely
programmatic [BaLa94].

The advantage of instrumented profiling is accuracy. Exact construction of execution
paths and dynamic procedure call graphs is possible, as well as other kinds of control-
flow graphs. Unfortunately, this comes at the cost of significant runtime overhead, rang-
ing up to 30% for typical applications and benchmarks [BaLa96]. The performance im-
pact disqualifies instrumentation for counting single instructions, as the overhead per
instruction would slow down the program immensely. The last problem one has to face
with instrumentation is that one has access to the machine code images, as changes have
to be performed on them. In most cases, system level profiling is therefore not possible.

Hardware Performance Counters Recently, all major processor implementations5 in-
troduced hardware registers to measure the execution of code without runtime perturba-
tion. These registers are referred to as hardware performance counters. Hardware per-
formance counters count events related to processor activities, like cycles, cache misses,
data reads, data writes, instruction stalls etc. The major concern when applying these
counters for profiling is that they are highly machine specific, i.e. inherently nonportable.
Development of high-level libraries like PCL [PCL] or PAPI [BrDoGa+00] alleviate this
problem by providing abstractions for least common features as well as specialized access
to native features with probing possibilities.

In the preceding two sections sampling and instrumentation were presented as the
primary means of generating program profiles. Both techniques were extended to work
with performance counters in order to minimize the runtime overhead incurred by pro-
filing [AmBaLa97].

Profiling Generic Code Profiling generic code poses no special challenges from the
implementation side, the tools available for nongeneric profiling are applicable without
modifications, as they operate on executing machine code. The GILF system is well suited
for profiling purposes, like for debugging, because instrumentation of the code can be
added and removed as needed at load time.

The only conceptual problem we have to handle is that program counter values are
given relative to instantiated algorithms. After having detected an algorithm instance
as being a performance bottleneck, two ways of further action are possible. First, one
can try to aggressively optimize the given algorithm instance. Second, and this is one
of our accomplishments, one can select another algorithm that realizes the same generic
function. Of course, this is only viable if at least one alternative implementation exists.
In order to be able to perform algorithm selection, we have to map the program locations
back to the generic function that resulted in the specific algorithm instance indicated by
the program counter. Figure 3.6 shows a schematic view of this mapping problem. At the
top is the concept C that introduces the function f. This function is implemented by the
two algorithms alg-f1 and alg-f2, respectively. The profiler detects an instance of alg-f2
as performance bottleneck, depicted by a program counter pointing into the algorithm’s
body. The PC’s value has also been mapped back to the generic algorithm alg-f2. The
code-generating loader can now replace alg-f2 at the appropriate invocation site with a
call to alg-f1.

5The Performance Counter Library (PCL) [PCL] supports these architectures: Alpha 21164/21264, MIPS
R10000/R12000, UltraSPARC I-III, PowerPC and Power3, as well as Pentium processors.

42 Chapter 3 · The GILF Compilation System

alg-f2 : domain -> domain

alg-f1 : domain -> domain

int

alg-f2 : int -> int

C

t

concept
function signature

algorithm

translated algorithm instance

maps to

implements

instantiates with t

legendf : domain -> domain

machine code of
algorithm body

PC

Figure 3.6: Schematic view of the mapping problem between program counter (PC) val-
ues to algorithm instances and to the generic algorithm implementations.

The accompanying work by Kreppel [Kre02] deals in more detail with aspects of pro-
filing and selection methods for generic algorithms.

3.2.5 Optimization System

The infrastructure just presented gives us the power to store precompiled generic li-
braries and create efficient instantiations of its generic components. At startup time all
concrete types of the generic algorithms and data structures are known and completely
resolved machine code can be produced from the GILF representation, without using
boxed representations of built-in types. This comes at the price of prolonged response
times whenever GILF code is requested whose architecture specific representation does
not already reside in the native code cache. Possible cases are startup time and whenever
units are dynamically linked. But owing to the late time of code generation, additional
optimization opportunities arise. We will describe the major parts of the optimization
system as well as the code enhancements they try to achieve.

3.2.5.1 Algorithm Selection

Let us concentrate our main efforts on transformations specific to generic programming
first. In the previous sections and chapter we have stressed several times the fact that
a generic function in SUCHTHAT can be implemented by different generic algorithms6.
Furthermore, a generic function can be specialized for a subset of the possible instanti-
ation arguments, and each specialization can itself be realized by multiple algorithms.
Specializations can also be declared for special values of its input parameters, projec-
tions in a recursion-theoretical sense. The specialized functions still compute the same
generic function, but for a restricted set of parameters. Algorithm selection is the process
of selecting one algorithm implementation among possible candidates.

6In C++ and Ada95, a generic function can have only one implementation. But out of performance con-
siderations, a generic function can have different specializations.

3.2 · Infrastructure of a GILF System 43

Having formulated the abilities of a flexible generic language like SUCHTHAT, we
now deliberate their impact on the GILF intermediate representation and its compilation
system. First of all, GILF has to provide facilities by which the front-end language can
propagate its decision which algorithms are valid candidates at a generic function calling
site. This means, all appropriate algorithms that implement the specific instance of the
generic function in the current context have to be listed in the intermediate representa-
tion. In GILF, the following solution is realized. A function call is always represented
by a symbol representing the most general generic function, and the value parameters.
Thus, the signature of the call is fixed, as well as parameter passing. In library code, this
is all that is available. In application code, where all instantiations are resolved, further
information has to be provided for the function call:

1. Bindings of the instantiation parameters to their arguments that describe this spe-
cific instance.

2. The list of candidate algorithms that result in valid instantiations.

The two items above present the interface to the algorithm selection unit (ASU). De-
pending on these information, the algorithm best suited to current task has to be selected
from the candidate list. Notice that the semantics of the front-end language influence
the information presented to the ASU. For example, one language might restrict the list
of candidates to the most specialized algorithms, while another could add all possibly
applicable algorithms to the list. GILF does not enforce a complex type system at the in-
termediate level, but rather requires the front-end to make its semantics explicit in the
intermediate representation. See section 4.9 for a detailed description.

To our knowledge, SUCHTHAT is the first language that makes algorithm selection
totally transparent to the library user. This duty, choosing the fastest algorithm out of
a pool of valid algorithms, is left to the programmer in current languages, hard-wiring
decisions into the code. Different algorithms are selected by their name, and no way to
combine them as a set of alternatives to perform the same task is available. Of course, a
SUCHTHAT programmer still has the power to select the algorithm she deems best suited
by hand. In this case, the candidate list in GILF is reduced to this one algorithm and
algorithm selection is skipped.

After algorithm selection has been executed by the ASU, the next step is to apply
the instantiation. Four alternatives to perform this task are feasible, each with its own
advantages and drawbacks.

Compile-time Instantiation Application Instantiation application is performed at com-
pile time. This has the advantage that all computations necessary are performed
on the development machine, the executable starts and runs at full speed on the
deployment machine. Of course, this can severely hinder the development process
as an extraordinary increase in compilation times can be observed [AbCo01]. Al-
gorithm selection has to be performed relying on purely static input data. Most
important, no machine code-generation is possible for uninstantiated generic code,
i.e. library code.

Link-time Instantiation Application At link time, full type information for applying
instantiations is available for the first time. Therefore, machine code could be
produced for complete applications. On the other hand, this results in statically
linked executables. Most current generic imperative languages like C++, Ada95,
and Modula-3 use a hybrid of compile and link time instantiation.

44 Chapter 3 · The GILF Compilation System

Load-time Instantiation Application Load-time instantiation application generates ma-
chine code for the selected algorithm at startup of the application. In the GILF proto-
type, this involves calling gilf2cpp, the translator from GILF to C/C++, and running
a local C/C++ compiler on the result. This fixes the algorithm that is called at every
calling site for the whole runtime of the application. Essential for this approach
is an intermediate representation of generic libraries like GILF. Algorithm selection
can be based on profiling data gathered in previous runs of the application.

Runtime Instantiation Application Runtime instantiation application takes the central
idea of our work even further. It would allow replacing the algorithm that is in-
voked at a function calling site at runtime. This has two implications for the opti-
mization system. The ASU is becoming part of the runtime system, which can be
solved by realizing the ASU with a client-server architecture. The ASU becomes the
server for the selection requests of the application, which becomes the client. Also,
a dedicated code adaptor is needed to patch the code that is currently executing,
such that the newly selected algorithm will be called.

A plethora of new questions to answer are introduced by the latter two schemes for
algorithm selection, which we consider primarily. The most obvious problem is which
criteria should guide the algorithm selection process?

In order to tackle this problem, let us have a closer look at the well known sorting
algorithms. Depending on the type of a container whose elements should be sorted, it is
reasonable to choose a different sorting algorithm, like quicksort for arrays and merge-
sort for linked lists and files. The generic sort algorithm in the STL requires random
access iterators and thus cannot be used with lists. This is a very clumsy way to han-
dle this algorithm selection problem. Code that uses the sort function cannot deal with
lists, because they have to be sorted with a member function, which has different syntax,
defeating the benefit of generic code. Our system makes available a platform where se-
lecting the appropriate algorithm can based on instantiation parameters, like the iterator
types.

Not only static instantiation parameters, like the type of the container, are viable cri-
teria for algorithm selection, also the container’s attributes like its elements’ values and
its size can help to choose a better algorithm. Such value parameters can either be com-
pile time constants or dynamic values that change each execution of the program. Since
quicksort’s complexity degenerates to O(n2) for certain input sequences, it would be bet-
ter to apply another sorting algorithm right from the start, if a frequent pattern in the
sequence of elements stored inside a container could be determined with a profiling or
monitoring tool. Of course, not only containers, but all other types, their values and
additional parameters, like the length of a list or the degree of a polynomial, can ex-
pose significant information for algorithm selection. Even some well known findings
from static complexity analysis or some previously developed heuristics can be useful.
David Musser introduced introsort [Mus97], a sorting algorithm based on quicksort that
switches to heapsort if a certain recursion depth is reached while partitioning. This effec-
tively protects against running into worst case. He uses a depth limit of log n, where n is
the length of the input sequence.

It is also of great importance that the characteristics at the machine level can have
an effect on the algorithm selection. Our field of special interest is computer algebra,
where algorithms can run for days and switching between one function’s different algo-
rithm implementations at the appropriate trade-off points can have a deep impact on its
runtime, e.g. using machine addition for numbers that fit into a few machine words and

3.2 · Infrastructure of a GILF System 45

addition for numbers of arbitrary precision (see [Wed96] and [Gra02]) otherwise. Exper-
iments on algorithm selection in this domain are available in [Kre02]. The Algorithmic
Database (ADB) is an off-line repository that stores precomputed measurements of algo-
rithm runtimes for different machine architectures. This enables the ASU to fit algorithm
selection to the actual hardware available.

The work by Kreppel [Kre02] presents the current ASU. It is designed as a rule-based
expert system. Rules are generated automatically from data present in the ADB, ulti-
mately resulting in performance predictions of instances of generic algorithms. Algo-
rithm selection consists of comparing the performance predictions for all algorithms from
a candidate list.

To conclude this discourse on algorithm selection criteria, a summary of these criteria
that can guide the selection process is given in table 3.1. In the left column, the criterion
is listed, the middle column contains the instantiation application time at which this cri-
terion could be exploited, and the right column lists requirements on the system which
have to be met such that the algorithm selection could be executed effectively.

Criterion Applicability Requirements
instantiation arguments compile-, link-, load-,

runtime
ADB

compile time constants compile-, link-, load-,
runtime

ADB

runtime constants load-, runtime ADB, code adaptor, execu-
tion time profiles

parameter values load-, runtime ADB, code adaptor, data pro-
files

hot spots/bottlenecks compile-, link-, load-,
runtime

ADB, code optimizer and
adaptor, profiler

Table 3.1: An overview of algorithm selection criteria.

The first row contains instantiation arguments, the second and third row summarize
static properties of the parameters, either known at compile- or runtime, the fourth row
denotes the parameters’ dynamic properties, i.e. their actual values, and the last row
deals with hot spots detected by a profiler.

Beside the selection criteria, other problems have to be scrutinized. An infrastructure
that allows code replacements has to be devised for runtime instantiation, . Both load-
and runtime instantiation require careful choice of the code sections that will undergo
optimization. Because of the perceived delay by the user, only selective application of
the optimization system will be tolerated. Finally, the heuristics that assess the criteria
are a major area of future research.

3.2.5.2 Exploiting Platform-Specific Features

A target independent intermediate representation allows the system to emit code tai-
lored for the processor architecture the program is actually running on. Nowadays this is
important even for the same architecture, because different members have heavily vary-
ing characteristics. E.g., the family of processors compatible to the 32 bit Intel Architec-
ture IA32 evolved from a pure CISC architecture to a typical RISC architecture internally.

46 Chapter 3 · The GILF Compilation System

Code for modern implementations of the IA32 architecture have to consider other con-
straints for efficient code generation than older ones, for example avoiding pipeline stalls
and cache misses.

Also, new features are added constantly with every new processor generation, like
MMX, Internet Streaming SIMD Extensions (see [Int99] for both), or 3DNow! [Adv99].
Special operations can be sped up significantly when making use of the available ex-
tensions. Our approach can handle such varying system configurations in a clean way
by compiling only those features into the executable code that are really available at the
platform the program is launched on.

In the GILF prototype implementation that translates to C/C++, this boils down to set-
ting the compiler optimization switches that enable processor extensions that are avail-
able on the deployment machine.

3.2.5.3 Intermodular Analysis

Another noteworthy point is the ability for intermodular optimizations. At runtime all
active compilation units are known and control- and data-flow analysis is not limited to
their boundaries. The optimizer knows the context of a called algorithm and can perform
individual manipulations like inlining, code movement and register allocation tailored to
the situation [Kis99]. A function call that is part of a hot path could be replaced by inline
code of the algorithm body, even if the algorithm resides in another compilation unit.
Again, late code generation paves the way for new approaches to code optimization.

On the other hand, intermodular analysis can be very expensive for large systems. If
it really recoups the increased processing time invested at program startup remains to be
shown when the GILF system is applied in large scale development.

3.3 Summary

This chapter gives an extensive overview of the GILF compilation system. It commences
by motivating the most important aspects of our intermediate representation, in partic-
ular its design goals, the abstraction level, structure and encoding. These aspects are
related to contemporary techniques. After these explanations, the infrastructure needed
for a complete GILF compilation system is described. The main components of this sys-
tem are the code-generating linker and loader, the native code cache, the runtime system,
and the optimization system. The runtime system’s subcomponents were further exam-
ined; it is made up of a garbage collector, a debugging system, and a profiling system.
The algorithm selection process gained special interest while detailing the optimization
system, as it is of primary importance for our vision of generic programming.

Chapter 4

The Annotated XGILF Specification

In the preceding chapter we described the overall structure of the GILF system as well as
the motivation and rationale for the GILF intermediate representation. Our work focused
on XGILF, an XML based incarnation of GILF.

We will now give a short introduction to the key technologies of XML relevant for our
purposes. Thereafter we will present the specification of XGILF in detail, i.e. the elements,
their attributes and their content that constitute an XGILF file.

4.1 A Concise Summary of XML

The XML Activity Statement of the World Wide Web Consortium (W3C) describes XML
as follows:

Extensible Markup Language (XML) is a simple, very flexible text format de-
rived from SGML (ISO 8879). Originally designed to meet the challenges of
large-scale electronic publishing, XML is also playing an increasingly impor-
tant role in the exchange of a wide variety of data on the Web. ([XMLA])

XML, the Extensible Markup Language, is a W3C core standard with accompanying
standards, tools and technologies that gained immense attention in the industrial and sci-
entific area since its publication as XML 1.0 recommendation in 1998. The key points that
make it attractive for all kinds of applications are its simplicity and extensibility. From
a high level view, XML is nothing more than a textual tree representation with name-
value pairs that are attached to the tree nodes. Therefore, it is appropriate to describe the
logical structure and storage of any structured data that should be exchanged between
processes, biased towards textual data.

4.1.1 Elements, Attributes, and Text

The building blocks of XML documents are elements, attributes, and text. An element
has an associated type which is denoted by the element’s name. Properties are attached
to elements as attributes, which are name-value pairs. The value of an attribute is given
as text string and accessed by its name. Elements can contain other elements and text
nodes, the content of an element. The content of an element is delimited by the element’s
start and end tag. All start tags must be matched by end tags and elements may not
overlap. With these facilities at hand data can be stored in a structured manner. Elements
can be perceived as tree nodes, attributes and text as leafs of the tree.

48 Chapter 4 · The Annotated XGILF Specification

4.1.2 Entities, Well-Formedness, and more

XML supports text expansion with so-called entities. An entity reference is replaced by
the text provided in the entity declaration. Entity references are allowed almost every-
where in an XML document and play an important role in avoiding redundancies.

A design goal of XML was that the representation is easily accessible to machine pro-
cessing. This was achieved by formulating strict rules how an XML document may look
like. This includes the restriction that elements are not allowed to overlap, the usage
of characters that form element tags and the declaration of attributes. XML documents
that adhere to these rules are called well-formed. For a complete set of well-formedness
constraints refer to the XML specification [XML00].

XML also supports comments, processing instructions (PIs), and CDATA sections.
The application of comments is obvious. PIs are used to pass information to the XML
processor that works on the XML document and CDATA section allow unescaped text
sections.

Another big advantage of XML is the fact that it is build on top of the Unicode stan-
dard [Uni00], i.e. XML documents can be written using the whole Unicode character set.
The beginning of an XML document usually allows auto-detection of the employed en-
coding. Thus, XML documents are internationalized by definition.

4.1.3 Valid documents

Well-formedness restricts XML documents to follow simple storage conventions. XML
documents whose content follows dedicated rules are called valid. The set of valid docu-
ments can be defined by means of document type definitions (DTDs), which are integral
part of the core XML standard [XML00]. A DTD closely resembles the EBNF specification
of grammars. It also allows to specify default values for attributes.

More recently, Schemas [XMLSP01] were added to the list of W3C specifications. An
XML Schema can define a set of valid documents more exactly than a DTD. They sup-
port a wide variety of structural components [XMLSS01] and a rich set of datatypes
[XMLSD01]. In contrast to a DTD, XML Schemas are written in XML itself and do not
have their own syntax. These points result in a more verbose specification of an XML
document’s content, compared to one given with a DTD.

The XGILF specification is given as an annotated document type definition. The an-
notations usually state additional semantic constraints immanent to our program code
representation that cannot be expressed in the DTD. Furthermore, usage examples ex-
plain the element type definitions. We have chosen to specify XGILF with a DTD because
it results in a more compact written presentation. Furthermore, Schema support has only
become available in XML parsers recently1.

4.1.4 Namespaces

As one intention of XML is world wide data exchange, one has to deal with the prob-
lem of name clashes. The relevant names are element type names and attribute names.
In order to prevent name clashes, a namespace mechanism was introduced for XML
[XMLN99]. The main point is that names from XML namespaces appear as qualified
names. A qualified name contains a colon that separates the name into a namespace pre-
fix and the local name. The prefix is mapped to an unique resource identificator (URI)

1The Xerces C++ parser from the Apache Project has XML Schema support since December 2001.

4.1 · A Concise Summary of XML 49

with a namespace declaration. The namespace specification gives a special meaning to
the colon in names, but an XML document using namespace prefixes is still well-formed
XML. An empty element of type unit in the xgilf namespace is given as example:

<xgilf:unit xmlns:xgilf="http://www-ca.informatik.uni-tuebingen.de/gilf/xgilf">
</xgilf:unit>

Notice the xmlns:xgilf attribute which identifies the namespace prefix for this element
and has the associated URI as value.

4.1.5 XML Parsing Technologies: DOM and SAX

The last sections dealt directly with the XML specifications concerning its structure and
content. One advantage of XML is its universal applicability, which becomes visible in
its tool support. A parser is an important tool to handle XML documents. Simple XML
parsers just check the well-formedness of documents, but most modern parsers also al-
low to check the validity of XML documents according to their DTDs or Schemas. There
are two established application programming interfaces to perform XML parsing that
follow different approaches, the DOM and the SAX API, respectively.

DOM The Document Object Model (DOM) is an official W3C standard [DOM00]. It
provides a tree-like structural view of XML documents and allows to access and manip-
ulate all parts of the document. The XML document is treated like a tree consisting of
typed nodes. The core specification features simple navigation in this tree, like advanc-
ing and retreating to sibling, children and parent nodes. There also exist more powerful
navigation mechanisms like iterators and treewalkers with filters [DOMT00]. They allow
very selective traversal of the XML document.

SAX The Simple API for XML is a de facto standard that is defined by its Java imple-
mentation, but bindings to many other languages like C++, Perl, and ML emerged. It
is the joined effort of many programmers on the Internet to develop a common event-
driven API for parsing XML documents [SAX]. Event-driven means that when parsing
is initiated, the parser reports events to the calling application through callbacks. Events
are starting and closing tags, text, attribute values and names, and so on. It is up to the
programmer to maintain state between different events if necessary.

DOM versus SAX: The Trade-Offs The advantage of DOM and other tree-like APIs
are the availability of the whole document all the time. Of course, this comes at a cost.
The XML document is kept in memory by the parser, for this reason DOM parsers are
rather resource hungry, especially with respect to main memory. Event-driven parsers
like SAX parsers are better suited for simple tasks on the XML document like locating
special element nodes. They usually do not keep an internal representation of the XML
document, but it is possible to create one for further processing.

Tree-based XML parsers are often more convenient for the programmer to deal with
but put more strain on the system resources, whereas event-driven parsers force the pro-
grammer to handle state on its own but are more economical with regard to machine
resources.

After this short overview of some basic XML technologies we will give the specifica-
tion of the XGILF core set.

50 Chapter 4 · The Annotated XGILF Specification

4.2 Prolog

A valid XGILF document provides a GILF declaration in the document’s prolog by defin-
ing a processing instruction (PI), additional and analogous to the XML declaration (see
[XML00], 2.8). The GILF processor operates on the XGILF document, therefore gilf is the
processing instruction’s target. The following information is passed to the GILF processor
in the PI’s attributes:

Version The version attribute identifies the version of the GILF system this file is created
with. This work describes the prototype implementation labeled as version 1.0.

Protocol The protocol attribute identifies the protocol this file employs. The prototype
only supports xgilf as value, as only XGILF processing is implemented.

Level The level attribute identifies the file’s GILF level. The GILF level indicates what
kind of features are present in the GILF file. Level 1 indicates only the core features,
presented in this work.

Notice that every GILF file contains the gilf processing instruction. If the protocol is
not xgilf, the first byte from the alternative encoding starts right after the closing string
‘?>’ of the PI, as depicted in figure 4.1.

<?gilf version="1.0" ... ?>

GILF Processing
Instruction

Protocol Specific
Prolog

GILF Prolog GILF Content

Figure 4.1: The layout of GILF files.

This way, the GILF processor can select the appropriate protocol handler. Furthermore,
every XGILF file is a valid XML and GILF file. The xgilf protocol specific prolog contains
the document type definition that points to the DTD for validation purposes. The com-
plete XGILF prolog with the document type definition and its gilf processing instruction
looks like this:

<?xml version="1.0"?>
<!DOCTYPE xgilf:xgilf SYSTEM "xgilf.dtd">
<?gilf version="1.0" protocol="xgilf" level="1"?>

4.3 Namespace

The XGILF elements live in their own namespace with the prefix xgilf. We declare entities
for referencing the namespace prefix, entity np adds a colon at the end, whereas entity ns
adds one at the front. This way, the prefix can be changed by touching only these entity
declarations.

"../xgf/xgilf.dtd" 50 ≡

4.3 · Namespace 51

<!-- The XGILF 1.0 DTD.
Location: http://www-ca.informatik.uni-tuebingen.de/gilf/xgilf/xgilf.dtd
Namespace URI: http://www-ca.informatik.uni-tuebingen.de/gilf/xgilf/ -->

<!ENTITY % np ’xgilf:’>
<!ENTITY % ns ’:xgilf’>

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

We started the file xgilf.dtd that contains the complete XGILF DTD. The namespace
identifier is also given which should be used in XGILF documents as value for the xmlns
attribute. Now we list all the XGILF element names.

"../xgf/xgilf.dtd" 51 ≡
<!-- Declare all element names in XGILF as entities with namespace prefix. -->
<!ENTITY % xgilf ’%np;xgilf’ >
<!ENTITY % unit ’%np;unit’ >
<!ENTITY % import ’%np;import’ >
<!ENTITY % declare ’%np;declare’ >
<!ENTITY % define ’%np;define’ >
<!ENTITY % bind ’%np;bind’ >
<!ENTITY % store ’%np;store’ >
<!ENTITY % extend ’%np;extend’ >
<!ENTITY % source ’%np;source’ >
<!ENTITY % function ’%np;function’>
<!ENTITY % type ’%np;type’>
<!ENTITY % type-params ’%np;type-params’>
<!ENTITY % type-param ’%np;type-param’>
<!ENTITY % func-params ’%np;func-params’>
<!ENTITY % func-param ’%np;func-param’>
<!ENTITY % const-params ’%np;const-params’>
<!ENTITY % const-param ’%np;const-param’>
<!ENTITY % algorithm ’%np;algorithm’ >
<!ENTITY % stat-seq ’%np;stat-seq’ >
<!ENTITY % expr ’%np;expr’ >
<!ENTITY % cond ’%np;cond’ >
<!ENTITY % assign ’%np;assign’ >
<!ENTITY % if ’%np;if’ >
<!ENTITY % else-if ’%np;else-if’ >
<!ENTITY % else ’%np;else’ >
<!ENTITY % while ’%np;while’ >
<!ENTITY % repeat ’%np;repeat’ >
<!ENTITY % for ’%np;for’ >
<!ENTITY % for-pre ’%np;for-pre’ >
<!ENTITY % for-post ’%np;for-post’ >
<!ENTITY % label ’%np;label’ >
<!ENTITY % branch ’%np;branch’ >
<!ENTITY % call ’%np;call’ >
<!ENTITY % return ’%np;return’ >
<!ENTITY % data ’%np;data’ >
<!ENTITY % elem ’%np;elem’ >
<!ENTITY % bind-type ’%np;bind-type’ >
<!ENTITY % bind-func ’%np;bind-func’ >
<!ENTITY % bind-static-params ’%np;bind-static-params’ >
<!ENTITY % bind-tp ’%np;bind-tp’ >
<!ENTITY % bind-fp ’%np;bind-fp’ >
<!ENTITY % bind-cp ’%np;bind-cp’ >

52 Chapter 4 · The Annotated XGILF Specification

<!ENTITY % bind-params ’%np;bind-params’ >
<!ENTITY % bind-param ’%np;bind-param’ >
<!ENTITY % var ’%np;var’ >
<!ENTITY % const ’%np;const’ >
<!ENTITY % val ’%np;val’ >
<!ENTITY % unit-dsg ’%np;unit-dsg’ >
<!ENTITY % type-dsg ’%np;type-dsg’ >
<!ENTITY % func-dsg ’%np;func-dsg’ >
<!ENTITY % data-dsg ’%np;data-dsg’ >
<!ENTITY % algo-dsg ’%np;algo-dsg’ >
<!ENTITY % var-dsg ’%np;var-dsg’ >
<!ENTITY % const-dsg ’%np;const-dsg’ >
<!ENTITY % binding-dsg ’%np;binding-dsg’ >
<!ENTITY % static-param-dsg ’%np;static-param-dsg’ >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

4.4 General Attributes

A typical phenomena in XGILF documents are elements that share parts of their attribute-
list declarations. In order to avoid inconsistencies between these declarations and for
documentation purposes, we represent these general attributes with parameter-entity dec-
larations. This is common practice, for example the official HTML 4.01 recommendation
[HTML99] employs this policy.

"../xgf/xgilf.dtd" 52a ≡
〈General Attributes 52b, ... 〉

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Identifiers and References A fundamental ability of an XGILF processor is to locate
specific elements within XGILF documents, for example an algorithm wants to refer to
its function declaration. This is accomplished by tagging all important elements with an
identifier. These identifiers are then referenced by other elements. Elements that have an
identifier attribute will become part of the internal representation’s symbol table for fast
lookup.

〈General Attributes 52b〉 ≡
<!ENTITY % Id ’id ID #REQUIRED’ >
<!ENTITY % IdReference ’ref NMTOKEN #REQUIRED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

The reason that ref attributes are of type NMTOKEN instead of IDREF is the constraint
that identifiers referenced by IDREF attributes have to exist in the same XML document
([XML00], 3.3.1). But our system allows elements to reference parts from other XGILF
documents in order to support modularity.

Valid identifier names follow a simple grammar. An identifier name starts with a
sequence of letters, the identifier prefix, followed by an underscore character ’ ’ and a
sequence of characters not containing the dot character ’.’, the identifier postfix. The dot
character is used as infix operator to create an identifier sequence. The formal grammar
is given using the syntax and rules of the XML Recommendation ([XML00], p. 8).

4.4 · General Attributes 53

xgilf-id ::= Letter+ ’_’ (NameChar - ’.’)+
xgilf-ids ::= xgilf-id (’.’ xgilf-id)*

The identifier prefix is limited to a defined set of valid prefixes. Every prefix is di-
rectly associated with an XGILF element type. Table 4.1 lists all possible prefixes and their
associated elements.

identifier prefix associated element type
u unit
f function
a algorithm
r required (dependent) function
t type declaration
d type definition
p dynamic value parameter
tp type instantiation parameter
cp constant value instantiation parameter
fp function instantiation parameter
l label
v variable
c constant
e data structure element
bf function binding
bt type binding
bsp static instantiation parameter bindings
bvp dynamic value parameter bindings

Table 4.1: Table of valid identifier prefixes in XGILF and their associated elements.

Debugging Information Another important aspect is interoperability with debugging
tools. Therefore, most elements can be enhanced with debugging information.

Some elements want to specify their source coarse grained. A source entity can be
a file, an unique resource locator (URL), a program repository in a development envi-
ronment, or some other kind of input stream. In general, the src attribute describes the
source from which these XGILF elements were generated. The special value system de-
notes XGILF documents belonging to the GILF system.

〈General Attributes 53a〉 ≡
<!ENTITY % Source ’src CDATA #IMPLIED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

The line and column attributes specify the position of a source language construct in the
input source that was translated into the current element. If line-end and column-end are
not given, the construct is assumed to continue up to the end of the line from the given
position.

〈General Attributes 53b〉 ≡

54 Chapter 4 · The Annotated XGILF Specification

<!ENTITY % SourcePos ’line CDATA #IMPLIED
column CDATA #IMPLIED
line-end CDATA #IMPLIED
column-end CDATA #IMPLIED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

The name attribute can hold an arbitrary string that corresponds to information of a source
language construct, e.g. an unmangled function name.

〈General Attributes 54a〉 ≡
<!ENTITY % SourceName ’name CDATA #IMPLIED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

Subelement Counter Some elements store the count of specific subelements in the
count attribute, for example the number of parameters a function has. This is intended
for speeding up the computation of XGILF documents and simple correctness checks.

〈General Attributes 54b〉 ≡
<!ENTITY % Count ’count CDATA #IMPLIED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

Access Modifiers The access-mod attribute controls if the corresponding symbol of
the current element is exported, i.e. accessible from other compilation units. The symbol
is denoted by its identifier. At the moment, the access modifier can make the symbol
either public or private. Finer control would be possible, e.g. access could be granted or
denied to specific compilation units.

〈General Attributes 54c〉 ≡
<!ENTITY % AccessModifier ’access-mod (public|private) "public"’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

Type Modifiers Elements that declare a type can indicate with the type-mod attribute
that this type should be treated in some way special. Currently, the only usage of the type
modifier is to indicate reference instead of value types.

〈General Attributes 54d〉 ≡
<!ENTITY % TypeModifier ’type-mod (is-ref) #IMPLIED’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

Built-in Algorithms and Data Structures Elements that define an algorithm or data
structure can indicate with the built-in attribute that this type should be treated spe-
cially by the back-end. These elements are recognized by the back-end as built-in algo-
rithms and data structures of the GILF system. Appendix C gives an overview of the GILF
core library and its built-in algorithms and data structures.

〈General Attributes 54e〉 ≡

4.4 · General Attributes 55

<!ENTITY % BuiltIn ’built-in (yes|no) "no"’ >

Definition defined by parts 52b, 53a, 53b, 54a, 54b, 54c, 54d, 54e.
Definition referenced in part 52a.

4.5 Root Element

The root element of an XGILF file is of type xgilf. There is no special meaning associated
with this element, its sole purpose is to hold compilation units (see section 4.6). In a
traditional programming environment, an XGILF document can correspond to a source
language file. But one can imagine more elaborate settings, e.g. all system units might
be kept in an XML database. There, the XGILF document could correspond to the whole
system library.

We develop the XGILF DTD by presenting the elements and their attributes. The ele-
ment names were introduced as entities in section 4.3.

"../xgf/xgilf.dtd" 55a ≡
<!ELEMENT %xgilf; ((%unit;)+) >
<!ATTLIST %xgilf; %Soure; >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

An xgilf element must hold at least one compilation unit. The element’s Source attribute
specifies the document’s source. This can be a file, a network resource or some other
input stream. The attribute value system is reserved to brand documents that were not
generated from a source language but are part of the XGILF core library.

4.6 Compilation Units

Compilation units are the most coarse-grained structuring element in XGILF. We see com-
pilation units as transformed source code program fragments, analogous to the notion in
[Car97]. A program fragment is not self-contained, that means it does not contain defini-
tions for all symbols it references. The external symbols have to be imported from other
program fragments, preferably already transformed into a compilation unit. Therefore,
it is not possible to compile a program fragment into an executable program.

The primary entities contained in XGILF compilation units are the signatures of func-
tions and types and their definitions, algorithms and data structures. Some declarations
and definitions are already linked together by preestablished bindings. The remaining
unbound symbols have to be present in the program fragment that holds the program
entry point. Moreover, compilation units can contain unit-wide constants and variables.
These constituents of a compilation unit are motivated by our research’s starting point,
the generic language SUCHTHAT [Sch96], which incorporates the imperative statements
from Aldes [LoCo92].

The source language has to map its module concept to compilation units, which is
straightforward for SUCHTHAT, as it is algorithm centered.

"../xgf/xgilf.dtd" 55b ≡
<!ELEMENT %unit; ((%import;)?, (%declare;)?, (%define;)?,

(%bind;)?, (%store;)?, (%extend;)?) >
<!ATTLIST %unit;

%Id; <!-- u -->

56 Chapter 4 · The Annotated XGILF Specification

digest CDATA #REQUIRED
%Source; %SourcePos; %SourceName; >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Looking at the unit element definition, we see that a compilation unit is made up of six
primary sections. Here, we give a short overview of their content, which will be detailed
in more detail in the following sections.

Import Section (import element): The dependencies on symbols from other compilation
units have to be made explicit in the import section.

Declaration Section (declare element): It holds the declarations of all function and type
signatures that belong to the compilation unit.

Definition Section (define element): Algorithm and data structure definitions are com-
bined in the definition section.

Binding Section (bind element): Bindings of algorithms to function declarations and of
data structure definitions to type declarations are stored in the binding section.

Static Storage Section (store element): Unit-wide available storage for constants and
variables reside in the compilation unit’s global storage section.

Extension Section (extend element): Information specific to the source language can be
stored in the extension section. This section is not specified here but serves as an
anchor element for future extensions.

All valid unit identifiers start with the prefix ’u’. In the DTD, all Identifier attributes
are followed by a comment that names the identifier’s prefix. For example, the system
unit for the boolean type and operations is called u bool:

<unit id="u_bool" name="std_boolean" src="system">

The digest attribute’s value is of central importance to GILF’s recompilation mechanism.
Disregarding the native code cache, GILF files are translated into machine code at pro-
gram load time. GILF’s high level of abstraction avoids any dedication to memory lay-
outs or function calling conventions. The code generating loader sees the whole program
and generates a valid executable. Thus, taking advantage of dynamic code generation,
every GILF compilation unit can be created from its corresponding program fragment
separately.

The native code cache of GILF systems requires more careful considerations with re-
gard to recompilations. Whenever an algorithm or data structure changes in such a way
that the binary code no longer resembles the semantics of the changed GILF or XGILF file,
the code cache has to be updated. These checks are made with the digest attribute. It
tries to concentrate the compilation unit’s interface into a value, i.e. only changes in the
unit that affect its clients should lead to changes of the digest value. This implies that
all code sections residing in the cache have to be recompiled that are clients of one XGILF
unit or document. Alternatively, the digest attribute can be given in the xgilf process-
ing instruction. An intersting assessment of recompilation effects on development time
is presented in [AdTiWe94].

The unit element also features the full set of debugging attributes. If the Source at-
tribute is not specified in a child node of the compilation unit, it is assumed to be inher-
ited.

4.6 · Compilation Units 57

4.6.1 Import Section

If a unit uses parts of another unit by referencing types, functions etc., the dependency
on such units has to be stated explicitly in a unit’s import section.

"../xgf/xgilf.dtd" 57a ≡
<!ELEMENT %import; (%source;+) >

<!ELEMENT %source; (%unit-dsg;+) >
<!ATTLIST %source;

input-src CDATA #REQUIRED >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

The input-src attribute of a source element references another GILF input sources that
contain the units to import. The unit designators enumerate these units contained in the
input source.

4.7 Declaration Section

The declaration section introduces function and type signatures. These are referenced
later on by their corresponding definitions using the identifier attribute. With this ap-
proach, a signature is given only once, no redundancy is introduced like in C++ declara-
tions and definitions, where the signature has to be repeated.

"../xgf/xgilf.dtd" 57b ≡
<!ELEMENT %declare; (%type; | %function;)*>
〈Type Declarations 57c〉
〈Function Declarations 59a〉
〈Instantiation Parameter Declarations 58〉
〈Value Parameter Declarations 59b〉

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

4.7.1 Type Declarations

A type declaration introduces a generic type signature, referenceable by its identifier.
The type signature is denoted by its instantiation parameters, these parameters will we
explained in the next section. Data structures from other compilation units can reference
a type declaration if the AccessModifier attribute is set appropriately (see section 4.4 for
details), data structures from the same unit have unrestricted access.

〈Type Declarations 57c〉 ≡
<!ELEMENT %type; ((%type-params;)?, (%const-params;)?, (%func-params;)?)>
<!ATTLIST %type;

%Id; <!-- t -->
%AccessModifier;
%SourcePos; %SourceName; >

Definition referenced in part 57b.

58 Chapter 4 · The Annotated XGILF Specification

4.7.2 Instantiation Parameters

Instantiation parameters are fixed at compile time and describe an instantiation, both of
types and functions. A type declaration prescribes the number and kind of instantiation
arguments that an instantiation has to provide in order to be valid. All semantic checks
of the given instantiation arguments must have been performed by the front-end dur-
ing instantiation analysis. Instantiation application in the back-end simply checks if the
instantiation is described completely, i.e. all the instantiation parameters are bound to
arguments. Instantiation parameters are divided into the following categories:

Type Parameters: They introduce type variables which are reference by their identifier.
Ultimately, type parameters have to be bound to representing data structures which
will replace the type variables in the process of instantiation application.

Function Parameters: They allow the type’s or function’s behavior to be parameterized
by other functions. At the moment, this makes sense for functions and their algo-
rithmic implementations only, as no operational properties are available for types.
This may change if class types are introduced. An example for such a function pa-
rameter is the comparison function that is used in a sorting algorithm. It directly
affects the algorithm’s behavior and must be present at the instantiation site at com-
pile time.

Constant Value Parameters: This last category of instantiation parameters is used to pa-
rameterize algorithms and data structures with a value that is constant at compile
time. Examples are the number of elements for a tuple data structure or the size of
a static array.

It is important to realize that two instantiations of the same data structure or algo-
rithm are considered equal only if all their instantiation parameters match exactly.

〈Instantiation Parameter Declarations 58〉 ≡
<!ELEMENT %type-params; (%type-param;)+ >
<!ATTLIST %type-params; %Count; >
<!ELEMENT %type-param; (%type-dsg;) >
<!ATTLIST %type-param;

%Id; <!-- tp -->
%SourcePos; %SourceName; >

<!ELEMENT %func-params; (%func-param;)+ >
<!ATTLIST %func-params; %Count; >
<!ELEMENT %func-param; (%func-dsg;) >
<!ATTLIST %func-param;

%Id; <!-- fp -->
%SourcePos; %SourceName; >

<!ELEMENT %const-params; (%const-param;)+ >
<!ATTLIST %const-params; %Count; >
<!ELEMENT %const-param; (%type-dsg;) >
<!ATTLIST %const-param;

%Id; <!-- cp -->
%SourcePos; %SourceName; >

Definition referenced in part 57b.

4.7 · Declaration Section 59

All instantiation parameters are structured the same way. A container element (type-
params, func-params, and const-params) subsumes parameters from the same category.
The number of parameters in the container for this category is captured in the Count
attribute. Then, every parameter is represented by an element with an unique identifier.
The identifier prefixes for the instantiation parameter categories is summarized in table
4.1. References to these identifiers in algorithms and data structures that implement the
function or type are replaced during instantiation application.

Function parameters require a function designator which denotes the signature the
bound instantiation argument must adhere to. Accordingly, type and constant value
parameters require a type designator to fix their signature.

4.7.3 Function Declarations

Functions can have two kinds of parameters. First, they can have instantiation parame-
ters. These are handled exactly the same way as for type declarations. Second, functions
have the usual dynamic value parameters. These are passed to the function at every call-
ing site, with arguments matching the types of the function’s parameters. The difference
between dynamic and constant value parameters is that in the case of constant value
parameters the type and the value of the parameter influence the function’s signature,
whereas only a dynamic value parameter’s type contributes to the signature.

〈Function Declarations 59a〉 ≡
<!ELEMENT %function; ((%type-params;)?, (%const-params;)?, (%func-params;)?,

(%params;)?) >
<!ATTLIST %function;

%Id; <!-- f -->
%AccessModifier;
%SourcePos; %SourceName; >

Definition referenced in part 57b.

The function element has the same attributes as the type element in the previous section.
The additional params child is worth elaborating on. It is also a container element for the
param elements that hold the information for every value parameter of the function.

4.7.4 Value Parameters

Value parameters are known in all programming languages with function and procedure
abstraction for control flow. In a generic setting, the type of a value parameter may not
only be an available type from the current or an imported module, but also a type variable
introduced in the function’s generic signature. GILF supports passing algorithms as run-
time parameters in the form of reference parameters. The information that a parameter
is to be treated as reference to a callable entity is made explicit by either the identifier of
the static instantiation parameter (see section 4.7.2) or the binding (see section 4.9). Both
are pointed to by the corresponding designator. During instantiation application, these
designators will be replaced by the fully instantiated algorithm or data structure. Follow-
ing restrictions apply to the designators: The static-param-dsg has to reference either a
type or function instantiation parameter, whereas the binding-dsg has to reference either
a type or function binding.

〈Value Parameter Declarations 59b〉 ≡

60 Chapter 4 · The Annotated XGILF Specification

〈Value Parameter Passing Modifiers 60〉
<!ELEMENT %params; (%param;)+ >
<!ATTLIST %params; %Count; >
<!ELEMENT %param; (%static-param-dsg; | %binding-dsg;) >
<!ATTLIST %param;

%Id; <!-- p -->
%PassingModifier;
%SourcePos; %SourceName; >

Definition referenced in part 57b.

Value Parameter Passing Conventions The second important aspect of value param-
eters are the passing conventions enforced by the language. As GILF is intended to sup-
port a reasonable amount of diverse imperative generic languages, it supports the most
commonly used passing conventions: call-by-value, call-by-result, call-by-value-result,
and call-by-reference. The PassingModifier attribute in XGILF controls which passing
convention is used.

〈Value Parameter Passing Modifiers 60〉 ≡
<!ENTITY % PassingModifier

’pass (in | out | inout | out! | inout! |
in_val | out_val | inout_val | out_val! | inout_val! |
in_ref | out_ref | inout_ref | out_ref! | inout_ref!)
#REQUIRED’ >

Definition referenced in part 59b.

Call-by-value copies the value of an argument to the function into the corresponding
parameter on function entry. This is reasonable for objects that fit into a machine
register, but sometimes it is also reasonable if you have to create a copy of the object
passed anyway. Built-in machine types are passed as value by default when using
the in value for the pass attribute. One can force usage of call-by-value by using the
in val value. If a composite data structure is passed by value, it is copied bitwise.
This behavior can be overridden by providing a clone algorithm for this type and
a binding to clone’s function declaration from the core library (see appendix C).
Then, this algorithm will be called.

Call-by-result is similar to call-by-value but takes place only on algorithm return. It
is indicated by the out attribute value for machine types and out val forces this
passing convention for all data structures. Its main purpose is to transfer computed
results to the caller.

Call-by-value-result is the combination of call-by-value and call-by-result. inout val
indicates this behavior for all data structures, and inout selects it for machine types
by default.

One has to keep in mind the performance implications when using these three call-
ing conventions. For data structures that fit into a register, like built-in machine
types, this is usually the best choice. But copying large structures like arrays can
lead to a performance hit as large amounts of memory are moved.

Call-by-reference is the last supported calling convention in GILF. When an argument is
passed by reference, only a memory reference (or pointer) is available to the algo-
rithm body. Thus, the operations on this argument directly operate on the original

4.8 · Definition Section 61

argument from the calling site. The compiler will usually flag errors if statements
in the algorithm body try to manipulate arguments that are passed as read-only
references. Data structures that do not fit into a machine register are automatically
treated as references, if not forced otherwise by the val suffix to the passing mod-
ifier. Analogously, one can force the usage of reference semantics for parameter
passing with the ref suffix also for built-in data structures.

Call-by-name is not directly supported in GILF. It is explained here for completeness of
this overview on passing conventions. The only significant language that provides
call-by-name is Algol 60. Call-by-name is similar to call-by-reference, but the ad-
dress of the argument is calculated at each access. For example, one can pass an
array element by name like a[i]. If i changes inside the callee, different elements
may be accessed.

The last thing to discuss about parameter passing are the out and inout values that
have an exclamation mark ‘!’ as suffix. These parameters denote the return type of a
function call when it is used as an expression. Only one parameter may be marked this
way in a function declaration. More on the simple notion of expressions in GILF will
follow in the section about algorithm definitions.

A simple example illustrates the descriptions given in this section, the declaration of
a generic addition function + : T × T → T . A function declaration is introduced that is
accessible by the identifier u func.f +. It has one generic type parameter that introduces
a type variable locally accessible by the identifier tp 0. Finally, two input parameters
and one output parameter are declared which employ the default passing convention.
All three parameters are declared as having the type tp 0, which is the function’s sole
generic type variable. The parameter p 2 is marked as the function’s return type.

<function id="u_func.f_+" name="+">
<type-params count="1"> <type-param id="tp_0" name="T"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="ret"> <static-param-dsg ref="tp_0"/> </param>
</params>

</function>

Now that we have seen how to declare type and function signatures, we will study how
to define their implementations.

4.8 Definition Section

The definition element define holds children of type algorithm and data. They describe
the implementations that realize declared functions and types.

"../xgf/xgilf.dtd" 61 ≡
<!ELEMENT %define; (%data; | %algorithm;)+ >
〈Algorithms 63〉
〈Data Structures 62〉

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

62 Chapter 4 · The Annotated XGILF Specification

4.8.1 Data Structures

We start with the definition of data structures, they are given in data elements. Data struc-
tures in GILF define either record or union types, i.e. they are used to define aggregate
datatypes. Other built-in data structures like arrays or machine types which subsume
integer or floating point types are part of the GILF core library.

The data structures available in GILF simply describe the memory layout of a type and
carry no behavior, like classes in object-oriented programming languages or virtual ma-
chines like the Java Virtual Machine (JVM, [LiYe99]). Therefore, the content is described
by elem elements. Each data structure is referenceable through its identifier, which can
be recognized by identifier prefix d. The data structure’s identifier reference attribute es-
tablishes its link to a type declaration. Only type declarations may be referenced by data
elements. The AccessModifier attribute states if the data structure is also visible to other
compilation units.

A very important aspect of GILF data structures is the BuiltIn attribute. If this flag
is set to yes, the data element has to be empty. The back-end will recognize it as special
data structure and will synthesize the appropriate code for it. For example, all machine
integer types are introduced this way in the GILF core library.

The kind attribute determines the data structure’s kind, i.e. if it is a record or union
type. A record type occupies at least the accumulated memory consumption of its el-
ements, whereas a union occupies at least the memory of its largest element. Padding
bytes can lead to a greater memory consumption.

〈Data Structures 62〉 ≡
<!ELEMENT %data; (%elem;)* >
<!ATTLIST %data;

%Id; <!-- d -->
%IdReference; <!-- t -->
%AccessModifier;
%BuiltIn;
kind (record | union) #REQUIRED
%SourcePos; %SourceName; >

<!ELEMENT %elem; (%static-param-dsg; | %binding-dsg;) >
<!ATTLIST %elem;

%Id; <!-- e -->
%TypeModifier;
%SourcePos; %SourceName; >

Definition referenced in part 61.

As type declarations are generic, data structures may be generic, too. This means that
a data structure’s element type can reference a type or function variable from the decla-
ration’s instantiation parameter list. This is done with the static instantiation parameter
designator. Also, an instantiation can be used as element type, pointed to by the bind-
ing designator. The same restrictions apply as for value parameters. Each element from
a data structure gets its own identifier such that they may be accessed for reading and
writing. The TypeModifier attribute can be used to store a reference to data structures
instead of embedding all its fields. For algorithms, this is the only option and applied au-
tomatically. Elements have the identifier prefix e. A STL like pair data structure together
with its type declaration would look like this:

4.8 · Definition Section 63

<!-- Heterogeneous pair type declaration. -->
<type id="u_ext.t_pair" name="pair">
<type-params count="2">
<type-param id="tp_0"/> <type-param id="tp_1"/>
</type-params>

</type>
<!-- Pair data structure definition. -->
<data id="u_ext.d_pair" ref="u_ext.t_pair" kind="record" name="pair">
<elem id="e_first" name="first"> <static-param-dsg ref="tp_0"/> </elem>
<elem id="e_second" name="second"> <static-param-dsg ref="tp_1"/> </elem>

</data>

4.8.2 Algorithms

Algorithm definitions reside in algorithm elements. An algorithm definition consists of
three major parts.

The first one, captured in the stat-seq element, is quite obvious. It holds the state-
ment sequence that describes the algorithm’s behavior. The available statements will
be explained in the next paragraphs. The statement child elements inside a statement
sequence are executed in the order of their occurrence.

Second, an algorithm has a local storage for the variables and constants it needs. This
storage is defined in the store element. Currently, GILF algorithms have to collect their
variables and constants and list them all in the algorithm-wide storage. Algorithms have
a flat scope. This is motivated by SUCHTHAT’s algorithm notion (see [Sch96], p. 45f.).

Finally, an algorithm definition has to list its functions that are subject to overload res-
olution and depend upon the algorithm’s instantiation parameters. This list is captured
in the func-params element. The instantiation of a generic algorithm has to provide bind-
ings for these function symbols, thus describing the outcome of the overload resolution.
This approach relieves the back-end from performing overload resolution, which can be
expensive for generic programming languages. The function parameters introduced in-
side the algorithm’s func-params element are called required or dependent functions, and
the identifier prefix for them is r.

The existence of this element has two reasons. First, one design goal of GILF is to
make as much information about the source code explicit as possible, such that further
processing by the back-end can proceed quickly. Second, GILF does not enforce a type
system in the front-end. The results of overload resolution and instantiation analysis are
stored in the bindings section instead of leaving these computations to the back-end. An
example should further clarify the purpose of this list of functions. Assuming that inside
the algorithm body two values are added, and the addition function depends on one of
the algorithm’s type variables, then the function symbol representing the addition will
be subject to generic overload resolution. If this type variable is bound to a machine inte-
ger, the result of the overload resolution will be the processor’s built-in integer addition.
Otherwise, binding the type variable to an arbitrary precision integer type, the result of
the overload resolution will be the algorithm that adds such integers. Thus, the function
symbol will either be replaced by a processor instruction or a function call.

〈Algorithms 63〉 ≡
<!ELEMENT %algorithm; ((%func-params;)?, (%store;)?, %stat-seq;)? >
<!ATTLIST %algorithm;

%Id; <!-- a -->
%IdReference; <!-- f -->

64 Chapter 4 · The Annotated XGILF Specification

%AccessModifier;
%BuiltIn;
%SourcePos; %SourceName; >

〈Expressions 64〉
〈Statements 65a, ... 〉

Definition referenced in part 61.

Algorithms introduce an identifier that begins with the identifier prefix a. They have to
reference a function declaration with the IdReference attribute which describes the algo-
rithm’s signature. The AccessModifier and BuiltIn attributes have the same meaning as
they have in data structure definitions.

4.8.2.1 Expressions

Expressions in GILF follow its usual intent to preserve already computed results and be
easily accessible to the back-end. Therefore, it is up to the front-end to resolve issues
like operator precedence and associativity of fully general expressions. Expressions are
usually composed of constants, variables, and function calls and their return values, op-
erators are already resolved to function calls. In the end, expressions yield a typed value.
There are three ways to represent a typed value in GILF:

1. as a variable,

2. as a constant,

3. or as a function call.

The first two are obvious, but what type has a function call? GILF supports expres-
sions through function calls in a simple way. One and only one of the out or inout pa-
rameters can be marked as return parameter (see section 4.7.4). This return parameter
determines a function’s type when used as expression.

〈Expressions 64〉 ≡
<!ELEMENT %expr; (%var-dsg; | %const-dsg; | %call;) >
<!ATTLIST %expr; %SourcePos; %SourceName; >

Definition referenced in part 63.

The following example shows an expression that corresponds to the addition of a variable
v i to the second element of a pair2 record v p. It assumes a nongeneric binary function
f int add, whose trivial binding is given with the function binding bf int add.

<expr>
<call ref="u_ext.f_int_add">
<binding-dsg ref="u_ext.bf_int_add"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="v_p.e_second"></expr> </bind-param>
<bind-param ref="p_1"> <expr><var-dsg ref="v_i"></expr> </bind-param>
</bind-params>

</call>
</expr>

2The pair type was introduced to exemplify data structure definitions in section 4.8.1.

4.8 · Definition Section 65

4.8.2.2 Statements

The statements available in GILF should provide enough possibilities to map any imper-
ative vocabulary to GILF without great problems. GILF statements are mainly influenced
by the statements available in C++ and Aldes. A sequence of statements is represented
by the stat-seq element.

〈Statements 65a〉 ≡
<!ELEMENT %stat-seq; (%assign; | %if; | %while; | %repeat; | %for;

| %label; | %branch; | %call; | %return;)* >
<!ATTLIST %stat-seq; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

Assignment A central aspect in imperative languages is changing state, which is per-
formed by assigning values to variables which represent the current state. Therefore,
GILF directly supports assignments. The built-in assignment statement bitwise copyies
the right-hand side expression to the left-hand side variable. In order to support other se-
mantics, the front-end has to introduce a dedicated assignment function and implement
the desired semantics in an algorithm based on the built-in assignment statement.

〈Statements 65b〉 ≡
<!ELEMENT %assign; (%var-dsg;, %expr;) >
<!ATTLIST %assign; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

Structured Control Flow Structured control flow is supported by the if, while, repeat,
and for elements. These elements are the preferred way in GILF to express control flow,
as unstructured control flow complicates the application of optimization algorithms later
on in the code generation process (see [Bra95] for a discussion).

The cond entities are expressions with an additional validity constraint which requires
the expression to be of type u bool.t bool from the GILF core library. This way we in-
troduce no dependencies in statements other than on the built-in boolean type and its
comparison functions.

〈Statements 65c〉 ≡
<!ENTITY % cond ’%expr;’ >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

The if element holds no big surprise. It allows to give an arbitrary number of else-if
branches and an optional else branch. The conditions for branches are expressed with
the cond entity. It can be any boolean GILF expression.

〈Statements 65d〉 ≡
<!ELEMENT %if; (%cond;, %stat-seq;, ((%else-if;)*, (%else;)?)) >
<!ATTLIST %if; %SourcePos; %SourceName; >

<!ELEMENT %else-if; (%cond;, %stat-seq;) >
<!ATTLIST %else-if; %SourcePos; %SourceName; >

66 Chapter 4 · The Annotated XGILF Specification

<!ELEMENT %else; (%stat-seq;) >
<!ATTLIST %else; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

The while and repeat elements represent the typical looping constructs. The condition
of the while loop is checked prior to entrance of the body, whereas the repeat loop first
executes its body and then checks the condition.

〈Statements 66a〉 ≡
<!ELEMENT %while; (%cond;, stat-seq) >
<!ATTLIST %while; %SourcePos; %SourceName; >

<!ELEMENT %repeat; (%cond;, stat-seq) >
<!ATTLIST %repeat; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

The for statement in GILF is very general, like its C++ counterpart. First, the statement
sequence in the for-pre element is executed once. Then the condition is always checked
before entering the loop body. After executing the loop body, the statement sequence in
the for-post element is executed.

〈Statements 66b〉 ≡
<!ELEMENT %for; (%cond;, for-pre?, for-post?, stat-seq) >
<!ATTLIST %for; %SourcePos; %SourceName; >

<!ELEMENT %for-pre; (stat-seq) >
<!ATTLIST %for-pre; %SourcePos; %SourceName; >

<!ELEMENT %for-post; (stat-seq) >
<!ATTLIST %for-post; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

Unstructured Control Flow Sometimes one cannot avoid direct jumps, especially when
creating intermediate code. Branches are split up in two categories, local and nonlocal
branches. Local branches jump to locations denoted by a label inside the current algo-
rithm. The implementation of these branches poses no real problem. The same is not the
case for non-local branches. The activation of the current algorithm has to be terminated,
which is a recursive process if the algorithm is recursive itself (see [GrBaJa+00]).

〈Statements 66c〉 ≡
<!ENTITY % Locality ’local (yes | no) "yes"’ >

<!ELEMENT %label; EMPTY >
<!ATTLIST %label;

%Id; <!-- l -->
%Locality;
%SourcePos; %SourceName; >

<!ELEMENT %branch; EMPTY>

4.8 · Definition Section 67

<!ATTLIST %branch;
%IdReference; <!-- l -->
%Locality;
%SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

The locality of a label or branch is designated by the local attribute, which defaults to
local. Labels introduce an identifier that can be referenced by branch elements. Their
identifier prefix is l. Notice that non-local labels have to provide a fully qualified iden-
tifier, i.e. it has to reside in a identifier chain which contains the algorithm’s and the
compilation unit’s identifiers.

Function Calls The last relevant statement is the function call, which is expressed with
the call element. A function call in a generic programming language involves the fol-
lowing steps:

Instantiation analysis The front-end processes the generic function call, which consists
of an instantiation request. It has to check if the provided instantiation arguments
are valid, thus constitute a legal instantiation. Thereafter, a source level representa-
tion of the requested instance is generated.

Overload resolution The function symbol representing the function call in the just gen-
erated representation is subject to the front-end language’s overload resolution,
which will finally bind the symbol to one or more valid algorithms.

Instantiation application Code is generated for the algorithm instance(s) created in the
previous steps. In GILF, this includes the collection of bindings, which describe the
selected instance(s).

Activation The actual function call is performed by passing the value parameters and
transferring control to the algorithm.

The first two steps take place at compile time, i.e. statically in the language front-
end. This makes sense as each front-end language can have its own semantic idiosyn-
crasies with regard to instantiation analysis and overload resolution. Therefore, the re-
sults of these processes should be stored in GILF such that instantiation application will
be straightforward.

After successful instantiation analysis, the front-end can completely describe the re-
quested instance. This can either be done with a function variable introduced by a in-
stantiation parameter, or a complete instantiation description given in a function bind-
ing. These possibilities are indicated by the static instantiation parameter designator or
the binding designator, respectively. More details on the bindings are given in section 4.9.
Furthermore, a feature for indirect function call’s is provided. This is made possible with
the variable and constant designator child elements. They have to point to algorithm
instances, which will be the target of the function call.

Finally, the dynamic value parameters have to be bound to typed expressions in the
bind-params element. The bindings are either given locally, i.e. nested inside the call
element, or globally, in the binding section. After following all designators and applying
the available bindings, all parameters must be bound to a typed expression. This im-
plies that bindings may be spread across several elements and are linked together with

68 Chapter 4 · The Annotated XGILF Specification

binding designators. The most local bindings replace more global bindings. The passing
convention employed for each parameter is denoted in the function signature’s params
element.

〈Statements 68a〉 ≡
<!ELEMENT %call; ((%static-param-dsg; | %binding-dsg; | %var-dsg; | %const-dsg;),

(%bind-params;)?) >
<!ATTLIST %call;

%IdReference; <!-- f -->
%SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

Please notice that the function call element in GILF is a generalization of the typical
notion of a function call in other intermediate representations. This is strongly motivated
by the fact that overload resolution is tightly coupled to generic programming. A func-
tion call element is better regarded as an overloaded symbol. Only its bindings will tell
if it is actually translated into a function call or into a machine operation.

With the return element the current algorithm is left cleanly. This may involve copy-
ing of the output parameters if they are passed by result. The optional expression child
node will be copied to the function’s marked return parameter (see section 4.7.4). Of
course, their types must match.

〈Statements 68b〉 ≡
<!ELEMENT %return; (%expr;)? >
<!ATTLIST %return; %SourcePos; %SourceName; >

Definition defined by parts 65a, 65b, 65c, 65d, 66a, 66b, 66c, 68a, 68b.
Definition referenced in part 63.

4.9 Binding Section

The binding section in GILF is a novel feature in intermediate representations and is di-
rectly motivated by the needs of generic programming. Inside the bind container ele-
ment, semantic properties of the front-end language are stored in order to completely
free the back-end form computing this data. Moreover, representing these properties in
the intermediate language avoids its proliferation with features that are better handled
in the language front-end. Finally, the binding section supports some interesting features
of the GILF system like automatic algorithm selection. In general, one should remark
that bindings in GILF are performed with the help of identifiers and references to these
identifiers, effectively introducing named instantiation and value parameters.

The bind element is the general container for bindings in XGILF. They are divided into
three different categories:

1. Function and Type Bindings. These are used to connect declarations to their def-
initions, this means data structures are bound to type declarations and algorithms
are bound to function declarations, respectively.

2. Instantiation Parameter Bindings. These are used to bind instantiation arguments
to their corresponding instantiation parameters. Effectively, instantiation parame-
ter bindings describe instantiations of functions and types.

4.9 · Binding Section 69

3. Value Parameter Bindings. These bindings simply describe the arguments of func-
tion calls.

"../xgf/xgilf.dtd" 69a ≡
<!ELEMENT %bind; ((%bind-func;)*, (%bind-type;)*, (%bind-static-params;)*,

(%bind-params;)*) >
〈Function and Type Bindings 69b〉
〈Static Instantiation Parameter Bindings 70a, ... 〉
〈Dynamic Value Parameter Bindings 71a〉

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

4.9.1 Function and Type Bindings

Function and type bindings establish the connection between declarations and their def-
initions. Function and type bindings are represented by the elements bind-func and
bind-type, respectively. They are structured the same way.

First, if the function or type is generic, an element of type bind-static-params de-
scribes the instance for which the binding applies. Then, at least one designator points
to the implementation of the bound construct. Currently, it makes only sense for func-
tions to provide more than one implementation. In this case, it is up to the algorithm
selection unit to choose the best candidate for efficient execution. The selection process
can be based on purely static data, most prominently the instantiation arguments, but
also on runtime properties, like data gathered in a profile run. Finally, optional binding
designators point to other bindings. This feature can be used to separate common pieces
of bindings into reusable parts, which will be recombined for the particular cases later.

〈Function and Type Bindings 69b〉 ≡
<!ELEMENT %bind-type; ((%bind-static-params;)?, (%binding-dsg;)*, (%data-dsg;)+) >
<!ATTLIST %bind-type;

%Id; <!-- bt -->
%IdReference; <!-- t --> >

<!ELEMENT %bind-func; ((%bind-static-params;)?, (%binding-dsg;)*, (%algo-dsg;)+) >
<!ATTLIST %bind-func;

%Id; <!-- bf -->
%IdReference; <!-- f --> >

Definition referenced in part 69a.

Bindings introduce identifiers by which they can be referenced. The prefix for type bind-
ings is bt, the one for function bindings is bf.

The identifier reference determines the construct’s signature by pointing to the appro-
priate declaration. References in bind-type elements have to refer to type declarations,
those in bind-func elements to function declarations.

The following example shows a function binding that describes the bindings of a
generic factorial function f fact, instantiated for the built-in machine type d uword. It
binds two algorithms, an iterative one called a facti, and a recursive one called a factr,
to the generic declaration. Notice that the bindings of the required functions for both
algorithms are omitted.

<bind-func id="u_ext.bf_fact" ref="u_ext.f_fact">
<bind-static-params>
<bind-tp ref="tp_0"> <binding-dsg ref="u_mtype.bt_uword"/> </bind-tp>

70 Chapter 4 · The Annotated XGILF Specification

</bind-static-params>
<algo-dsg ref="u_ext.a_facti"/> <!-- iterative algorithm -->
<algo-dsg ref="u_ext.a_factr"/> <!-- recursive algorithm -->
</bind-func>

Specialization, an important technique in generic programming, is supported in GILF by
means of function and type bindings. The designators in the binding element describe the
valid algorithms for the given instantiation, thus a binding representing a specialization
provides only the set of specialized algorithms.

4.9.2 Static Instantiation Parameter Bindings

The binding of instantiation parameters characterizes instances of a generic construct
statically. They are specified with bind-static-params elements, whose subelements are
bindings for type parameters (bind-tp), for constant value parameters (bind-cp), and for
function parameters (bind-fp). Typical for bindings, they may be spread over several el-
ements and combined by means of binding designators for sharing purposes. Identifiers
introduced by static instantiation parameter bindings are prefixed with bsp.

〈Static Instantiation Parameter Bindings 70a〉 ≡
<!ELEMENT bind-static-params (bind-tp*, bind-cp*, bind-fp*, binding-dsg*) >
<!ATTLIST bind-static-params %Id; >

Definition defined by parts 70a, 70b.
Definition referenced in part 69a.

The purpose of these bindings is to bind instantiation parameters to instances of
generic constructs, either data structures or algorithms. These are described with func-
tion or type bindings, as discussed above. The bindings’ subelements are therefore nested
function or type bindings, or designators pointing to such bindings.

〈Static Instantiation Parameter Bindings 70b〉 ≡
<!ELEMENT %bind-tp; (%binding-dsg; | %bind-type;) >
<!ATTLIST %bind-tp;

%IdReference; <!-- tp --> >

<!ELEMENT %bind-fp; (%binding-dsg; | %bind-func;) >
<!ATTLIST %bind-fp;

%IdReference; <!-- fp --> >

<!ELEMENT %bind-cp; (%const-dsg;) >
<!ATTLIST %bind-cp;

%IdReference; <!-- cp --> >

Definition defined by parts 70a, 70b.
Definition referenced in part 69a.

The identifier references of instantiation parameter bindings refer to the parameters’
identifiers in the context in which they occur. For example, if a generic function is called
inside a generic algorithm, the binding may refer to the algorithm’s instantiation param-
eters given in its function signature. This will sometimes require elaborate tracking of the
reference structures, thus demanding a good debugger at the GILF level.

4.9 · Binding Section 71

4.9.3 Dynamic Value Parameter Bindings

The last binding category is the one for bindings of value parameters of function calls.
They are straightforward and specified by bind-param elements, that are subelements
of the bind-params container element. Nonlocal value parameter bindings introduce an
identifier prefixed with bvp. The bound values are given by expression nodes, which
were described in section 4.8.2 on algorithm definitions.

〈Dynamic Value Parameter Bindings 71a〉 ≡
<!ELEMENT %bind-params; ((%bind-param;)*, (%binding-dsg;)*) >
<!ATTLIST %bind-params; %Id; >

<!ELEMENT %bind-param; (%expr;) >
<!ATTLIST %bind-param;

%IdReference; <!-- p -->
%SourcePos; %SourceName; >

Definition referenced in part 69a.

The identifier reference in bind-param elements has to refer to parameter identifiers. If the
parameter binding is not given locally, these identifiers are determined by the function
call’s context.

4.10 Static Storage

The store element in XGILF is used to describe static storage. Static storage can appear
at two different scope levels in GILF, either as unit wide storage of constants and vari-
ables, or as storage local to an algorithm. These scoping rules are quite rigid, and later
revisions of GILF may introduce block scoped storage, which is a feature of most contem-
porary programming languages like C++ and Java. It would facilitate targeting GILF as
intermediate representation.

"../xgf/xgilf.dtd" 71b ≡
<!ELEMENT %store; (%var; | %const;)* >
〈Static Attribute 72a〉
〈Variables 72b〉
〈Constants 72c〉

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Variables reserve the raw memory needed to represent typed values. In GILF there exist
two kinds of variables:

1. Algorithm variables.

2. Unit variables.

Algorithm variables are local to the algorithm they are declared inside, and state-
ments of this algorithm may manipulate the values stored in these variables, only. The
type of algorithm variables is fixed for each instance of the algorithm, that means func-
tions operating on these variables may not be instantiated in such a way that they require
different “instances” of the same variable.

Sometimes, a group of related algorithm instances need to share state. A prominent
example are static data members of a class template in C++. Here, all member functions

72 Chapter 4 · The Annotated XGILF Specification

of each class template instantiation have access to these data members. In such cases, a
variable has to be marked as static with the corresponding attribute.

〈Static Attribute 72a〉 ≡
<!ENTITY % StaticModifier ’static (yes|no) "no"’ >

Definition referenced in part 71b.

Unit variables allow all algorithm instantiations of a unit to communicate with each other,
they even allow cross-unit communication if the access attribute is set to public. The
type of a unit variable has to be fixed, that means all of the instantiation parameters of
the variable’s type have to be bound. This is necessary in order to support access from
all instantiated algorithms. Otherwise, different instantiations would require different
instances of the variable and would ultimately manipulate different memory locations.

Variables introduce an identifier with the prefix v. The optional value child node val
denotes the value to which the variable should be initialized. If it is not present, only the
raw memory will be reserved, filled with arbitrary data.

〈Variables 72b〉 ≡
<!ELEMENT %var; ((%static-param-dsg; | %binding-dsg;), (%val;)? >
<!ATTLIST %var;

%Id; <!-- v -->
%TypeModifier;
%AccessModifier;
%StaticModifier;
%SourcePos; %SourceName; >

Definition referenced in part 71b.

Constants are treated almost the same as variables. The most significant differences are
that the value child node has to be present and the manipulation of the initialized mem-
ory of the constant may not be changed during algorithm execution. Constants introduce
an identifier with the prefix c.

Notice that constants are usually treated as nullary functions in high-level languages,
e.g. TECTON. But constants play an important role in optimization phases of the back-
end. Therefore, we decided to represent them explicitly in GILF.

〈Constants 72c〉 ≡
<!ELEMENT %const; ((%static-param-dsg; | %binding-dsg;), %val;) >
<!ATTLIST %const;

%Id; <!-- c -->
%TypeModifier;
%AccessModifier;
%StaticModifier;
%SourcePos; %SourceName; >

Definition referenced in part 71b.

4.10.1 Representing Value

This far, we have introduced almost all relevant abstractions to map generic, imperative
languages to GILF. These abstractions are functions, types, algorithms, data structures,
statements, and state. What is still missing is the ability to represent the values of typed
variables and constants.

4.10 · Static Storage 73

As XGILF is an XML based format, values have to be stored in textual form. Every
valid value must have at least one lexical representation. For example, a floating point
number can be represented in a human readable format, like 12.7, or the binary data that
represents the best approximation of this number in the native machine format. Depend-
ing on the lexical representation, further processing is necessary. It is straightforward to
convert a hexadecimal representation to binary data, but finding a good approximation
of a floating point number is more demanding.

The W3C recommendation for XML Schemas deals with this problem extensively
in Part 2: Datatypes [XMLSD01], which is heavily influenced by the international stan-
dard for Language-independent datatypes [ISO11404]. In the Schema recommendation,
a large set of built-in datatypes is defined by denoting their range of values and their
lexical representation. Furthermore, methods to derive user-defined datatypes from the
built-in ones are specified.

The val element fulfills the function of lexically representing values in XGILF. The
back-end will convert this representation into binary data for the built-in types. Notice
that the front-end language has to decide to what type the value should be converted,
the value’s type is not directly encoded in the val element. Only typed entities can have
a value child node, thus the back-end always knows to which type the value should be
converted.

"../xgf/xgilf.dtd" 73 ≡
<!ELEMENT %val; (%val;)* >
<!ATTLIST %val;

val CDATA #IMPLIED
kind (bool|dec|hex|real|string|[]|record|union) #REQUIRED
%Count;
%IdReference; <!-- d.e -->
%SourcePos; %SourceName; >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

The val attribute contains the lexical representation of the value. It can make full
use of Unicode characters, as XML is based on the Unicode Standard [Uni00]. The kind
attribute tells the back-end how the val attribute should be interpreted. For example, the
integer 255 can either be represented as 255 of decimal kind (dec), or as FF of hexadecimal
kind (hex). Table 4.2 lists all available kinds for XGILF value elements and how they
should be interpreted by the back-end.

For the representation of nested values of arrays, records, and unions, the Count at-
tribute has to be present. It simply states the number of val subnodes. Arrays start filling
the data structure at index zero and repeat the given value sequence if Count is smaller
than the array’s size. Record and union elements are specified with the identifier refer-
ence attribute, unreferenced elements are left uninitialized. Some examples illustrate the
val element:

<val val="true" kind="bool"/>
<val val="-4711" kind="dec"/>
<val val="FEFF" kind="hex"/>
<val val="Hello, World." kind="string"/>
<val val="a < b" kind="string"/>
<val kind="[]" count="2">

<val val="1" kind="dec"/><val val="2" kind="dec"/>
</val>
<val kind="record">

74 Chapter 4 · The Annotated XGILF Specification

Kind Interpretation
bool Boolean value, represented as either true or false.
dec Numerical value, represented in decimal notation. Composed of a sign

symbol which is either + or -, digits from 0 to 9 and a decimal delimiter
symbol.

real Decimal fraction, which allows the common scientific notation, con-
sisting of mantissa and exponent. The exponent is separated from the
mantissa by the symbol E or e.

hex Binary data, represented as hexadecimal value of the bit pattern.
string String value, represented as sequence of Unicode characters. Notice

that the front-end has to replace the quotation marks used to delimit
the attribute’s value with the appropriate entity declarations.

[] Array, which recursively contains the values of the array elements.
record Record, which recursively contains the values of the record elements.
union Union, which recursively contains the values of the union elements.

Table 4.2: Available value kinds and their interpretation.

<val val="Böblingen" kind="string" ref="d_loc.e_town"/>
<val val="Germany" kind="string" ref="d_loc.e_country"/>
<val val="71034" kind="dec" ref="d_loc.e_zipcode"/>

</val>

One question remains that is directly related to the generality of generic programming.
It is common to heavily overload symbols in generic code, a prominent example is the
symbol 1 standing for unity. It can represent the integer value 1, which can be converted
to machine datatypes trivially, but it can also represent the unity matrix, which requires
special code for conversion into the used machine representation of matrices.

The particular problem we have to deal with is how to handle lexical representations
of constants whose type is given by a type variable. The interpretation of the literal is
possible only after instantiation of the algorithm in which it occurs, because the type
variable remains unbound up to this stage. If the type variable resolves to a built-in
data structure, the back-end is responsible for producing the binary representation of the
literal. But how does one generate the binary representation of values given as literals for
user-defined types? Generic programming languages can take two approaches in dealing
with literals.

1. The literal representation of a value in the source code implicitly determines the
value’s type. This reduces the types of literals to types intrinsic to the front-end
language, the built-in datatypes. One example in this category is C++. It emulates
generic constants by providing possibilities to convert built-in datatypes to user-
defined datatypes with overloaded constructors and assignment operators. These
functions perform the work of creating a binary representation of the value for the
user-defined datatype, starting from values of the built-in datatypes.

2. Constant values are treated as pure nullary functions. Here, constants are repre-
sented by identifiers that were introduced with function declarations. The function
returns always the same value, the constant which it represents. The generation
of the binary representation of the value is performed inside of the function body,

4.11 · Designators 75

as the whole knowledge of the value is already present. The problem with this ap-
proach is that value ranges are handled poorly, every symbol has to be enumerated.

Both ways of dealing with values are supported in GILF in its current form. If types
of constants are bound to built-in data structures, the back-end synthesizes the correct
binary representation for the given value. Notice that this policy is a little bit more gen-
eral than in C++, where the literal’s type is fixed by its representation, whereas a value
node in GILF may represent the value of any built-in type to which it it is convertible. Of
course, the behavior of C++ is also possible, one has to bind the constant’s type directly
to a built-in data structure, not to a type variable from the constant’s context.

Nullary functions are handled in GILF by declaring a function that has one output
parameter. This parameter specifies the constant’s type as its return value, and the algo-
rithm bound to this function generates the value’s binary representation inside its param-
eter’s memory. This directly supports the general notion of constant nullary functions.

Left for future work, an integration of the XGILF value representation with XML
Schema datatypes is highly desirable. Furthermore, XGILF itself should be expressed
as XML Schema. But as mentioned at the beginning of this chapter, we sticked to the
compact DTD form in this document for conciseness reasons.

4.11 Designators

Designators are the last elements of the XGILF specification. They are used as kind of typed
references. In XGILF elements (GILF nodes), the necessity often arises to reference other
elements in the XGILF document. In simple cases where no further information has to be
present, this can be accomplished by using the identifier reference attribute described in
the section on general attributes (see section 4.4). For the following scenarios, this is not
feasible:

• One has to reference multiple elements. In XML, an attribute name has to be unique.
Here, a designator sequence solves the problem, as elements can be repeated an
arbitrary number of times.

• Another important aspect of designators is the ability to have their own subele-
ments, which allows them to describe the reference in more detail, even recursively.
For example, algorithm designators contain elements for describing the required
instances of their required functions. This can lead to recursive calling chains.

Furthermore, different kinds of designators exist, thus making references in XGILF
documents more robust and reliable by exposing more information about the designa-
tor’s purpose.

The structure of designator elements is always the same. A designator has one iden-
tifier reference attribute which points to the referenced XGILF element. The designator’s
subelements, if any, further describe the reference as follows.

Unit designators have no subelements, they are used to list the dependent units in
import elements. A unit designator must reference a unit’s identifier.

"../xgf/xgilf.dtd" 75 ≡
<!ELEMENT %unit-dsg; EMPTY >
<!ATTLIST %unit-dsg; %IdReference; <!-- u --> >

76 Chapter 4 · The Annotated XGILF Specification

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Type and function designators serve the same purpose, they point to a type or function
declaration, respectively. If no subelements are provided, all the instantiation parameters
introduced by the referenced declaration are left unbound. Otherwise, the instantiation
is fully or partially described, either directly with the bind-static-params element, or
indirectly with binding designators.

"../xgf/xgilf.dtd" 76a ≡
<!ELEMENT %type-dsg; ((%bind-static-params;)?, (%binding-dsg;)*) >
<!ATTLIST %type-dsg; %IdReference; <!-- t --> >
<!ELEMENT %func-dsg; ((%bind-static-params;)?, (%binding-dsg;)*) >
<!ATTLIST %func-dsg; %IdReference; <!-- f --> >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Data structure and algorithm designators follow the same structure as type and func-
tion designators, but have slightly different semantics. They point to implementations of
types or functions, respectively. They can also have binding subelements that describe a
full or partial instantiation. Notice that these bindings reference instantiation parameters
from the type or function declaration, which is available only by following the identi-
fier reference of the referenced implementation element. This is always possible as data
structure and algorithm elements have to reference a declaration.

"../xgf/xgilf.dtd" 76b ≡
<!ELEMENT %data-dsg; ((%bind-static-params;)?, (%binding-dsg;)*) >
<!ATTLIST %data-dsg; %IdReference; <!-- d --> >
<!ELEMENT %algo-dsg; ((%bind-static-params;)?, (%binding-dsg;)*) >
<!ATTLIST %algo-dsg; %IdReference; <!-- a --> >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Static instantiation parameter designators reference either instantiation parameters intro-
duced in the declaration of a function or type, or the instantiation parameters introduced
as required functions of an algorithm definition.

"../xgf/xgilf.dtd" 76c ≡
<!ELEMENT %static-param-dsg; EMPTY >
<!ATTLIST %static-param-dsg; %IdReference; <!-- tp|fp|cp|r --> >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

Variable and constant designators are typically used as expressions, variable designators
can also designate the target of an assignment. The type of a variable or constant is com-
pletely determined by its context, which manifests in its binding or static instantiation
parameter designators. Therefore, variable and constant designators accept no subele-
ments.

"../xgf/xgilf.dtd" 76d ≡
<!ELEMENT %var-dsg; EMPTY >
<!ATTLIST %var-dsg; %IdReference; <!-- v --> >
<!ELEMENT %const-dsg; EMPTY >
<!ATTLIST %const-dsg; %IdReference; <!-- c --> >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

4.11 · Designators 77

Finally, binding designators are declared. Their sole purpose is to reference binding el-
ements from the binding section, thus help assemble the complete binding information
required for instance descriptions or function calls. They must not have subelements.

"../xgf/xgilf.dtd" 77 ≡
<!ELEMENT %binding-dsg; EMPTY >
<!ATTLIST %binding-dsg; %IdReference; <!-- bt|bf|bsp|bvp --> >

File defined by parts 50, 51, 52a, 55a, 55b, 57a, 57b, 61, 69a, 71b, 73, 75, 76a, 76b, 76c, 76d, 77.

4.12 Summary

In this chapter we provided a thorough description of XGILF, the XML-based external
GILF representation. It started with a concise introduction to basic XML facts and its
key technologies. Then, an annotated DTD was presented that detailed all elements of an
XGILF document. Decisions that require more explanations were motivated by examining
other common approaches.

An XGILF document consists of compilation units that are made up of six major sec-
tions, the import, declaration, definition, binding, storage, and extension sections. Figure
4.2 presents an overview of this structure, detailing the most important elements of an
XGILF document.

xgilf
Source

unit
Id, Digest, ...

*

import

?

source
InputSrc

+
unit-dsg

IdRef
+

declare
?

function
Id

type
Id

*

*
type-params

Id
func-params

Id

* *

*
*

params
Id*

define

bind

store

extend

?

?

??

algorithm
Id, IdRef, ...

data
Id, IdRef, ...

+

+

elem
Id

*

* *?

stat-seq

assign

if

while

repeat

for

label

branchreturn

*

*

*

*

*

*

*

*

*

call

var
Id

const
Id

*

*

bind-func
Id, IdRef

bind-type
Id, IdRef

bind-params
Id

bind-static-
params

Id

*
*

bind-fp
Id, IdRef

bind-tp
Id, IdRef

*

*

*

*

Figure 4.2: Hierarchy of the major XGILF elements.

Finally, designators were explained, which are used in most XGILF elements for referenc-
ing other elements in cases where simple identifier reference attributes do not suffice.

Chapter 5

The GILF Prototype

In this chapter we will describe the implementation of the GILF prototype. The imple-
mentation language is C++, as we want to exploit the benefits of generic programming
for our project. Programming in C++ has undergone major changes in recent years. The
emphasize shifted from object oriented programming to writing generic code, and com-
bining these two paradigms.

Genericity allows writing flexible components that are easy to combine without sac-
rificing efficiency. Techniques like traits, policies, and of course the principles behind
the Standard Template Library (see section 6.1.2), are becoming more widely used and
accepted.

5.1 Modern C++ Programming

Before discussing the GILF system prototype’s implementation, we present a short intro-
duction to important modern C++ programming techniques and idioms. Furthermore,
important external libraries are introduced briefly.

5.1.1 Traits

A recurring problem in generic C++ code is that a generic component does not only re-
quire bindings for its template parameters, but is also needs further characteristic infor-
mation of the actual arguments. This information should be available through a uniform
interface such that the component making use of it can be written in a generic style. Traits
classes are designed for this purpose, they provide a consistent interface to a type’s prop-
erties through constant type and function member definitions. For example, the C++
Standard Library contains the class numeric limits which is specialized for all built-in
types and describes their arithmetic properties. Among others, it has these members:

static const bool is_signed = false;
static T epsilon() throw();

The member is signed stores true for a type that has a signed representation (which
is the case for all predefined floating-point and signed integer types), and function ep-
silon() returns the difference between 1 and the smallest value greater than 1 that is
representable for the type. The STL iterator traits are another prominent example, they
specify an iterator’s category, the value, reference, and pointer type of the elements an
iterator refers to, and the difference type of iterator positions ([ISO14882], 24.3.1).

5.1 · Modern C++ Programming 79

What we achieve with traits classes is exposing properties dependent on the actual
type parameter of the traits class. C++ supports this with explicit template specialization.
If an explicit specialization of the traits class for a given type exists, the common inter-
face refers to this specialization, otherwise the most general one is taken. Overall, traits
introduce a level of indirection for type dependent characteristics. A detailed overview
on traits is presented in [Ale00].

5.1.2 Policies

A technique closely related to traits is policy-based programming [Ale01]. However,
where traits concentrate on static, type dependent properties, policies try to capture sin-
gle behavioral aspects of complex entities. An entity could be a smart pointer class, and
policies of this entity are the storage policy, which abstracts the structure of the smart
pointer, or the ownership policy, which handles how a smart pointer tracks the lifetime
of the pointee and eventually deletes it.

The target of policy based programming is to construct a combinatorial set of behav-
iors for an entity by mixing a small set of core policy classes. Because policy parameters
in C++ are resolved at compile time, this flexibility does not come at the expense of in-
creased runtime, like dynamic dispatching in object oriented languages.

Like a traits class, a policy defines a common interface. Any class that respects this
interface can be used as policy of the associated entity. Unlike traits, a policy is concerned
with behavioral aspects and often carries state.

5.1.3 Template Metaprogramming

Template metaprogramming (TMP) has received some attention in the C++ community
recently. The C++ template mechanism can be used to perform operations on types and
values of built-in types that take place at compile time. The key idea behind TMP is that
nesting a template instantiation inside its own template definition introduces looping by
recursion. The base cases of the recursion are given by explicit or partial specializations
of the class template, they are often called the if-conditions of TMP. A simple example
should clarify the approach which computes the factorial of an integer at compile time:

template<int n> // general case
struct Factorial
{
enum { value = n * Factorial<n-1>::value };

};

template<> // recursion base
struct Factorial<0>
{
enum { value = 1 };

};

static int i = Factorial<7>::value;

Return values in TMP are all accessible members of the class template, in the example the
enumeration value. Relevant examples of TMP are typelists [Ale01], tuples [Jär01], and
the call and type traits in Boost.

80 Chapter 5 · The GILF Prototype

5.1.4 Boost

The Boost C++ Libraries are a collection of open source libraries that aim at augmenting
the C++ Standard Library [Boost]. Boost includes small utility libraries, as well as large,
domain specific libraries, like the Boost Graph Library [SiLeLu01]. What sets the Boost
effort apart from other open source libraries is that before inclusion into the collection
a library has to pass a peer review process where all members scrutinize its design and
implementation. This ensures a high quality standard of the Boost library collection. The
following libraries play an important role in our implementation:

shared ptr: This class is a nonintrusive smart pointer implementation that features ref-
erence counting semantics.

tuple: This facility allows storing fixed-size sequences of heterogeneous elements that
can be accessed by integer indexes [Jär01].

any: The any class is designed to hold values of different types but does not attempt
conversion between them. The type of the contained value is fixed at object creation
time and cannot be altered afterwards.

tokenizer: The Boost tokenizer breaks character sequences into tokens and provides an
iterator interface to the traversal of the resulting token stream.

5.2 General Structure

The major parts of the GILF system implementation are distributed in two libraries, the
utility library libutility and the GILF library libgilf. The utility library contains code
that is of general applicability in contexts other than GILF, whereas the GILF library
contains all components directly related to the application logic of our GILF prototype.
Furthermore, the command line program gilf2code is responsible for reading in a GILF
stream and transforming it into fully instantiated code. Figure 5.1 summarizes this struc-
ture. The following sections will discuss the GILF library, some additional details on it
are available in appendix B. The utility library is presented in appendix A.

gilf2code

libgilf

libutility

Figure 5.1: The three major building blocks of the GILF prototype implementation.

In chapter 3 the GILF system was introduced. Its core item, the code generating linker
and loader, was also the main focus of our implementation. Therefore, the following
sections will proceed roughly according to the flow chart presented in figure 3.3.

5.2.1 Coding Conventions

Namespaces All identifiers in our libraries are introduced in namespace GILF_Core or
one of its sub-namespaces. Identifiers of entities that should not be used in client code
of the libraries are introduced in namespaces detail. If not mentioned otherwise, all

5.2 · General Structure 81

components described in this section and appendix A reside in the top-level namespace
GILF_Core.

Identifier Naming Identifiers follow a consistent naming scheme which is influenced
by the Boost and STL coding conventions, but also contains some idiosyncrasies. We list
the conventions in a tabular form:

Entity Example Description
class Node Core Words start uppercase, separated by under-

score.
template parameter NodeType Words start uppercase, not separated.
member data m children Words all lowercase, prefixed by ’m ’, sepa-

rated by underscore.
member type sptr type Words all lowercase, separated by underscore.
method get children Words all lowercase, separated by underscore.
free function clone node Words all lowercase, separated by underscore.
global data g log Words all lowercase, prefixed by ’g ’, separated

by underscore.

Table 5.1: Naming conventions for identifiers of C++ constructs in GILF libraries.

Separation of Declarations and Definitions For nongeneric code, we apply the typ-
ical separation of declarations into header files using the extension hpp, and definitions
into implementation files using the extension cpp. However, even with up to date C++
compilers this is not feasible for generic code. In order to keep class declarations con-
cise, we adopt the following discipline. Both declarations and definitions go into header
files, but definitions are written outside of class template declarations. The same is true
for member templates. Free function templates are written as unified declaration and
definition.

5.3 Internal Representation

The internal representation is located at the center of figure 3.3, most processes in GILF
generate it, either by deserialization of another format or by applying transformations on
the internal representation.

The utility library provides two classes, Node and Node_Core, for creating a tree-like
internal representation. A node’s child handling abilities are factored out into Node_Core,
which is the default for Node’s template parameter NodeCore. Node holds the information
present in a node. For this purpose, the class template Indexed Properties from the util-
ity library is used. Taken as is, these two classes provide static node classes, no overhead
due to virtual function lookup is introduced.

5.3.1 Base Class GILF_Node

However, this basic setup is changed for nodes used in libgilf. It introduces a special-
ized version of the Node_Core called GILF_Node, from which all nodes in GILF’s IR inherit.
Thus, operations in libgilf are performed on subclasses of GILF_Node. These nodes ex-
hibit changed behavior compared to plain nodes from libutility as follows.

82 Chapter 5 · The GILF Prototype

〈Listing 5.1: GILF_Node Declaration〉 ≡
class GILF_Node : public Node_Core<>,

public Loki::BaseVisitable<>
Code extracted from file gilf/Node.hpp, lines 54 to 55.

Class GILF_Node derives from Node_Core in order to inherit its child handling abilities.
In addition, it inherits from BaseVisitable, a base class from the Loki library (see sec-
tion 6.1.2 and A.4) that is needed in order to make a node visitable. This is necessary
because transformations on GILF’s IR are performed using visitors. BaseVisitable has
a virtual member function Accept(), consequently GILF_Node’s behave virtual. Anyhow,
GILF_Node contains virtual member functions on its own. The class hierarchy of a Node
present in the GILF prototype is summarized in figure 5.2, ordered by library membership
which is given at the bottom.

Node
+data

T, CoreType

Node_Core
-m_children

+push_back()
+child_at()
+child_count()

SequenceT, AllocT

GILF_Node

+clone()
+get_children()
+typed_child_count()
+name()

all GILF_Nodes
default

Loki::BaseVisitable
+Accept()

ReturnType

libutilitylibgilfLoki

Figure 5.2: Node classes in GILF and their relationships.

It is important to realize that a GILF_Node stores only pointers to subclasses of itself in
the member m children that is part of Node_Core. This way, pointers in this member can
always be cast to GILF_Node pointers, which enables virtual dispatch. This is reflected in
the types exported by GILF_Node:

〈Listing 5.2: GILF_Node: Types〉 ≡
public: // Types.
// Redefine sptr_type to more specialized shared pointer.
typedef boost::shared_ptr<GILF_Node> sptr_type;
typedef std::deque<sptr_type> sequence_type;
typedef sequence_type::size_type size_type;

Code extracted from file gilf/Node.hpp, lines 60 to 64.

Finally, we take a look at the new member methods introduced by GILF_Node.

〈Listing 5.3: GILF_Node: Methods〉 ≡
public: // Methods.
// Create a new node and clone the current node’s properties.
// Returns a pointer to the new node.
virtual sptr_type clone() const { return sptr_type(); }
// Get all child nodes of a given type.
template <class ChildType>
void get_children(sequence_type& nodes);
// Count child nodes of a given type.

5.3 · Internal Representation 83

template <class ChildType>
size_type typed_child_count();
// Return a string that gives GILF_Nodes a name.
virtual std::string name();
// Enable Loki Visitors.
DEFINE_VISITABLE()

Code extracted from file gilf/Node.hpp, lines 68 to 81.

The virtual method clone() allows virtual cloning of a GILF node, this means all its prop-
erties are retained. This is an elementary C++ idiom, because constructors cannot act vir-
tual (see [ClLoGi99], 21.07). Notice that we pass around shared pointers of cloned nodes
which facilitates memory management. We provide an auxiliary free template function
clone node that makes writing overrides of the clone method trivial. It has one template
parameter that should be a subclass of GILF_Node. A shared pointer holding a node of
this type is created, and the data member of the function argument node is copied. An
override of method clone is reduced to simply calling this function template.

〈Listing 5.4: Function Template clone_node〉 ≡
template <class NodeType>
GILF_Node::sptr_type clone_node(const NodeType& node)
{
// Create shared pointer with full type information.
boost::shared_ptr<NodeType> new_node(new NodeType);
// Clone the properties.
new_node->data = node.data;
// Return cloned node. This implicitly performs an upcast to GILF_Node.
return new_node;

} // clone_node
Code extracted from file gilf/Node.hpp, lines 149 to 158.

Method get_children retrieves a node’s direct children of a given type. The type is the
method’s template parameter NodeType, and the matching child nodes are appended
to the sequence container nodes, the function’s parameter. The implementation of this
member template allows some important insights on the interaction of Node_Core and
GILF_Node. The scaffolding of this method is a loop over all child nodes.

〈Listing 5.5: GILF_Node: Member Template get_children〉 ≡
template <class ChildType>
void GILF_Node::get_children(sequence_type& nodes)
{
// Look for subnodes.
for (Node_Core<>::size_type n = 0; n < child_count(); ++n)
{
<see Listing 5.6 on page 83>

} // for
} // get_children

Code extracted from file gilf/Node.hpp, lines 93 to 112.

More interesting is the loop’s body. We need the exact dynamic type of each child such
that we can compare it against the template parameter’s type. Unfortunately, this is not
possible with the pointers stored in m_children, which are of static type Node_Core<>.
Therefore, we cast each node to a GILF_Node, which is legal because all nodes in the GILF
IR are subtypes of GILF_Node. The cast is performed with a template function provided by
Boost’s shared pointer. The new pointer is then queried for its exact dynamic type, which
is now possible as subclasses of GILF_Node act virtually. The general rule in code using
libgilf is to manipulate nodes only through shared pointers of internal type GILF_Node.

84 Chapter 5 · The GILF Prototype

〈Listing 5.6: Member Template get_children: Loop Body〉 ≡
// Cast the Node_Core<> to a GILF_Node.
sptr_type gnode =
boost::shared_static_cast<GILF_Node, Node_Core<> >(child_at(n));

// Now check the runtime type of the contained pointer.
if (typeid(*gnode.get()) == typeid(ChildType))
{
g_log(lc_std, lt_lowest) << "Found subnode of type "

<< typeid(ChildType).name() << ".\n";
nodes.push_back(gnode);

}
Code extracted from file gilf/Node.hpp, lines 100 to 109, referenced in listing 5.5.

Method typed_child_count is similar to method get_children, but it just counts a node’s
direct child nodes of a given type, instead of appending them to a sequence container.

The macro DEFINE_VISITABLE() has to appear inside a class declaration such that the
class is visitable by a subclass of Loki’s Visitor (see [Ale01], chapter 10).

5.3.2 Defining a Subclass of GILF_Node

After the detailed look at class GILF_Node we will now explain how to define a specialized
GILF node. We will do this by picking the algorithm node from the XGILF specification
in chapter 4 and define the corresponding GILF node. This task can be split up in three
steps:

1. Provide type definitions for the node’s property groups1.

2. Provide a type definition that selects the node’s property groups.

3. Declare the node’s class and provide overrides for virtual methods.

Relying on the facilities introduced in section A.1, step 2 is achieved for an algorithm
node with this type definition of the Indexed_Properties class template:

〈Listing 5.7: Algorithm Node: Defining its Properties〉 ≡
typedef Indexed_Properties< id_indexed_property, idref_indexed_property,

builtin_indexed_property,
debug_indexed_property,
access_mod_indexed_property >

algorithm_properties;
Code extracted from file gilf/nodes/Algorithm.hpp, lines 50 to 54.

The types used as template arguments will be discussed later, they result from accom-
plishing step 1. Now we show how to declare class Algorithm. This is done by inheriting
from class Node from the utility library, using type definition algorithm_properties and
class GILF_Node as template arguments.

〈Listing 5.8: Algorithm Node: Class Declaration〉 ≡
class Algorithm : public Node<algorithm_properties, GILF_Node>

Code extracted from file gilf/nodes/Algorithm.hpp, line 66.

We still have to override the virtual methods introduced in GILF_Node, most importantly
method clone. As we noted earlier, this work is delegated to the function template
clone_node (see listing 5.4). Again, Loki’s macro DEFINE_VISITABLE() has to be present
such that the node can be visited.

1A property group can consist of a single property.

5.3 · Internal Representation 85

〈Listing 5.9: Algorithm Node: Virtual Methods〉 ≡
public: // Virtual methods.
// Create a new node and clone the current node’s properties.
// Returns a shared pointer to the new node.
virtual GILF_Node::sptr_type clone() const { return clone_node(*this); }
// Enable Loki Visitors.
DEFINE_VISITABLE()
// Return node’s name.
virtual std::string name() { return std::string("Algorithm"); }

Code extracted from file gilf/nodes/Algorithm.hpp, lines 71 to 78.

We see that performing steps 2 and 3 is straightforward and displays the node’s charac-
teristics in a clean way. What is left are guidelines to define a property group (step 1).
For this purpose, we look at debug properties, which are specified for the algorithm’s
properties as debug_indexed_property. Most property groups are collected in the header
file Common_Properties.hpp and are reused by nodes that share these property groups.

〈Listing 5.10: Indexed Property: Debug Property Group〉 ≡
enum Debug_Prop_Index
{
debug_line_iprop = 0, debug_column_iprop,
debug_name_iprop, debug_source_iprop

};

typedef long debug_line_iprop_type;
typedef long debug_column_iprop_type;
typedef std::string debug_name_iprop_type;
typedef std::string debug_source_iprop_type;

typedef boost::tuples::tuple<
debug_line_iprop_type, debug_column_iprop_type,
debug_name_iprop_type, debug_source_iprop_type >

debug_prop_tuple;

typedef GILF_Core::Indexed_Property<Debug_Prop_Index, debug_prop_tuple>
debug_indexed_property;

Code extracted from file gilf/Common_Properties.hpp, lines 76 to 93.

First, an enumeration has to be defined that that contains index values for all properties
collected in this property group. Because Boost tuples are zero-based, the first index
is explicitly set to 0. Then, the type of every property is exported as type definition.
This is not strictly necessary, but enhances understandability of the code. Using this
type definitions, a tuple type definition is introduced that will hold all properties with
full type information. Finally, the index enumeration and the tuple type are bound to
Indexed_Property as template arguments. This final type definition can now be shared
by any node that uses the instantiations of class template Indexed_Properties as data
member.

What we have achieved with this composition of type definitions, class templates and
virtual inheritance is an efficient, type safe method for building internal representations
based on nodes that can define, share, and recombine property groups. Access to a prop-
erty consists of a single method call with the property’s index as template argument.

86 Chapter 5 · The GILF Prototype

5.3.3 The Factory for GILF_Nodes

An important aspect of an polymorphic, hierarchical data structure is its ability to be
reconstructed from an serialized, external representation. Object factories are a common
approach to handling the occurring problem of generating objects from type information
present in a form that is not accessible to the C++ type system2. We employ a slightly
modified version of Alexandrescu’s generic factory template (see appendix A.4.1). A
global node factory is defined that produces specific GILF nodes based on a type identifier
encoded in a string.

〈Listing 5.11: GILF Node Factory〉 ≡
typedef Factory<GILF_Node::sptr_type, node_id_type, create_node_fptr>
node_factory_type;
// Declaration of global node factory.
extern node_factory_type *g_node_factory;

Code extracted from file gilf/Node_Factory.hpp, lines 43 to 46.

The initialization of the pointer g_node_factory prior to first usage is enforced with a des-
ignated initialization object placed in the unnamed namespace. This general approach for
initializing static variables in C++ libraries is explained in [Sch89], but the utility library
contains a policy based class template Initializer for aiding the programmer in this
task.

Nodes that participate in the GILF system should be created using the global node
factory. One can see how the factory is put to use in section B.1 that elaborates on the
deserialization framework.

5.4 General Facilities

5.4.1 Logging

The utility library contains a generic logging class (see section A.2), and the GILF library
contains an instantiation of this class template Log with four logging categories. A type
definition is provided for convenience. The global GILF logging object is called g_log.

〈Listing 5.12: GILF Logger: Type and Declaration〉 ≡
typedef Log<4> logger_type;
extern logger_type g_log;

Code extracted from file gilf/Logger.hpp, lines 39 to 40.

The four logging categories should be accessed through named constants only. The cate-
gories are for logging standard messages, reporting warning and error events, as well as
debugging output.

〈Listing 5.13: GILF Logger: Categories〉 ≡
const logger_type::category_count_type lc_std = 0;
const logger_type::category_count_type lc_warning = 1;
const logger_type::category_count_type lc_error = 2;
const logger_type::category_count_type lc_debug = 3;

Code extracted from file gilf/Logger.hpp, lines 49 to 52.

Accordingly, five constants are defined that should be used when specifying the priority
of the logging output. The gaps between the thresholds constants allow some fine tuning
of the priorities.

2For more details on the topic, refer to [Ale01], chapter 8.

5.4 · General Facilities 87

〈Listing 5.14: GILF Logger: Thresholds〉 ≡
const logger_type::threshold_type lt_highest = 0;
const logger_type::threshold_type lt_high = 10;
const logger_type::threshold_type lt_medium = 20;
const logger_type::threshold_type lt_low = 30;
const logger_type::threshold_type lt_lowest = 40;

Code extracted from file gilf/Logger.hpp, lines 64 to 68.

5.4.2 Symbol Table

The GILF library also contains a customizable symbol table. A typical symbol table imple-
mentation uses an underlying hash table such that the amortized complexity for getting
and putting elements into the symbol table are constant time operations [Sed98]. A space
efficient alternative to hash tables for implementing string symbol tables based on tries is
presented in [BeSe97]. We have chosen a hash table based implementation, because most
implementations of the C++ Standard Library provide a hash_map container3.

Keys into the symbol table are GILF identifiers (see section 4.4), which are standard
C++ strings in the internal representation. A type definition id_iprop_type is available:

〈Listing 5.15: Internal Identifier Type〉 ≡
typedef std::string id_iprop_type;

Code extracted from file gilf/Common_Properties.hpp, line 108.

The value associated with an identifier key in a symbol table consists of two parts and
is therefore wrapped inside a C++ pair container. The first element is a shared pointer
to a GILF node, and the second element can contain arbitrary data describing the node.
The type of the second element is specified by the symbol table’s template parameter
PropertyType. This can be used to adapt different symbol tables to store only properties
required in the current context.

〈Listing 5.16: Symbol Table: Class Declaration〉 ≡
template <typename PropertyType>
class Symbol_Table

Code extracted from file gilf/Symbol_Table.hpp, lines 73 to 74.

The types for key and values are exported through type definitions.

〈Listing 5.17: Symbol Table: Type Definitions〉 ≡
public: // Types.
// The key into the symbol table is the symbol’s identifier.
typedef id_iprop::type key_type;
// Each key is associated with a GILF node and additional properties.
typedef GILF_Node::sptr_type node_type;
typedef PropertyType prop_type;
typedef std::pair<node_type, prop_type> value_type;

Code extracted from file gilf/Symbol_Table.hpp, lines 79 to 85.

Based on these type definitions, the type of the STL hash_map that holds our symbol table
can be fixed.

〈Listing 5.18: Symbol Table: Map Type〉 ≡
typedef HASH_MAP_NAMESPACE::hash_map<const key_type, value_type, Hash_Id> map_type;

Code extracted from file gilf/Symbol_Table.hpp, line 102.

3The Dinkum library contains hash tables, as well as all STL implementations based on the SGI STL, like
STLport or Comeau’s C++ library.

88 Chapter 5 · The GILF Prototype

The function object Hash_Id implements the hashing function of the hash table. It does
not depend on the class template’s template parameter, therefore we have put it into an
unnamed namespace. Thus, it is available only to our symbol table class, and does not
have to be created for every symbol table instantiation. It is important to remember that
hashing functions have to be stateless, i.e. they compute the same result every time when
invoked with the same key value. We implemented the string hashing function djb2,
which is known for its excellent distribution and speed on many different sets of keys
and table sizes. It is attributed to Daniel J. Bernstein.

〈Listing 5.19: Symbol Table: Hashing Function〉 ≡
template <typename PropertyType>
std::size_t
Symbol_Table<PropertyType>::Hash_Id::operator()(const key_type& key) const
{
// Hash function for strings (djb2 by D.J. Bernstein).
std::size_t hash = 5381;
for (std::string::size_type sz = 0; sz < key.size(); sz++)
{

hash = ((hash << 5) + hash) + key[sz];
}
return hash;

}
Code extracted from file gilf/Symbol_Table.hpp, lines 139 to 150.

What is left to discuss are the public methods to update and query a symbol table. The
add and remove methods do what their names suggest. They return true if the operation
finished successful, otherwise they return false, for example if an entry with the identi-
fier passed to add is already present. Method is_member checks if an entry with a given
identifier is already present in the symbol table, and get also returns the entry’s value.

〈Listing 5.20: Symbol Table: Methods〉 ≡
public: // Methods.
// Add an entry to the symbol table.
bool add(const key_type& id, node_type& node);
// Remove an entry to the symbol table.
bool remove(const key_type& id);
// Check if a entry with id exists in symbol table.
bool is_member(const key_type& id) const;
// Return a symbol table entry.
node_type get(const key_type& id) const;

Code extracted from file gilf/Symbol_Table.hpp, lines 109 to 117.

The GILF library contains two global symbol tables. The first one, g_symbol_table, con-
tains all nonlocal symbols that are available in the currently loaded GILF units, and
g_instance_table, the instantiation table contains symbols of instantiated algorithms
and data structures. Their management will be touched in the following sections.

〈Listing 5.21: Global Symbol Tables〉 ≡
// The global symbol table for symbols inside unchanged units.
// Will be filled during inflation.
typedef Symbol_Table<empty_property> symbol_table_type;
extern symbol_table_type g_symbol_table;
// The global symbol table for instantiated nodes. Will be filled during
// visitation with the Instantiator.
typedef Symbol_Table<empty_property> instance_table_type;
extern instance_table_type g_instance_table;

Code extracted from file gilf/Globals.hpp, lines 48 to 55.

5.5 · Visiting GILF Nodes 89

5.5 Visiting GILF Nodes

Once the external GILF representation has been deserialized (sse section B.1), transfor-
mations are applied to the internal representation in order to finally arrive at nongeneric
code. In the GILF prototype, we emit C++ code, but using only basic features, no tem-
plate code is generated. For each distinct transformation, we employ an instantiation of
the generic visitor class template ([Ale01], chapter 10). We exemplify the functioning of
the visitor pattern by looking at class Importer, which allows automatically tracking unit
dependencies denoted by GILF’s import nodes. It is a bit unusual for a transformation
visitor, because it creates new units and does not actually transform existing units, but it
suffices for our explanatory purposes.

The first step in implementing a visitor is planning ahead. A flow graph of the visited
nodes that also contains the visitation order is the essential guideline for a visitor imple-
mentation. We call this graph a visitor’s visitation graph. The following properties of the
flow graph will need special treatment:

Cycles. Cycles in the visitation graph can be handled either by explicitly storing infor-
mation about the visitation process or creating new visitors and calling them recur-
sively.

Edges to non-child nodes. Edges to nodes that are not direct child nodes of the originat-
ing node require locating the target node. Often, look-up in a symbol table is the
adequate means for this operation.

Multiple ingoing edges. If a node can be reached through different paths, it is important
to detect the source node of this visitation. Special state has to be stored in the
visitor object to achieve this.

Multiple outgoing edges. If a node has multiple outgoing edges, either the order of their
traversal has to be fixed, or conditions have to be stated that allow selective traver-
sal.

The visitation graph for class Importer is extremely simple. Only direct child nodes
are visited without multiple edges. The only complication is the cycle introduced by
recursively tracking unit dependencies of the inflated unit.

unit import source unit-designator+ +

Figure 5.3: Visitation graph of visitor Importer.

We use the XGILF element tag names for naming the nodes. Arrows with no strong
dot at the beginning are used for paths to direct subnodes, whereas a dot denotes jumps
to a referenced node. An unannotated arrow means that exactly one target node should
be visited, an arrow with ‘+’ annotation targets one or more nodes, and an arrow with ‘*’
targets zero, one or more nodes. A ‘?’ denotes an optional path. A box at the arrow’s be-
ginning denotes a path with alternative target nodes, only one of them should be chosen.
The node whose type is set in bold face marks the visitation root node.

A visitor has to inherit from all visitor instantiations with nodes that it wants to visit,
in addition to the BaseVisitor. The nodes required for Importer can be extracted easily
from the visitation graph in figure 5.3.

90 Chapter 5 · The GILF Prototype

〈Listing 5.22: Class Importer: Declaration〉 ≡
class Importer : public Loki::BaseVisitor,

public Loki::Visitor<Unit>,
public Loki::Visitor<Import>,
public Loki::Visitor<Source>,
public Loki::Visitor<Unit_Designator>

Code extracted from file gilf/Importer.hpp, lines 49 to 53.

Next, a constructor usually sets up internal data specific to the visitor. For Importer,
this means setting the unit store4 in which the inflated unit will be stored. Optionally,
recursive import dependency tracking can be disabled.

〈Listing 5.23: Class Importer: Constructor〉 ≡
Importer(Unit_Store* store, bool recurse = true) :
m_store(store), m_recurse(recurse) {}

Code extracted from file gilf/Importer.hpp, lines 59 to 60.

One of the main benefits of a visitor is its ability to store state inside the object’s data
members which are accessible to all nodes during visitation. An importer has three mem-
bers. The pointer to a unit store and the boolean flag that controls recursive dependency
tracking are set during object construction. However, the pointer to the current input
source m_input is reset each time a source node is reached, depending on its input source
property.

〈Listing 5.24: Class Importer: Data Members〉 ≡
// Pointer to the unit store that will hold the inflated units.
Unit_Store* m_store;
// Input_Source object for the current source.
boost::scoped_ptr<Input_Source> m_input;
// Flag to indicate recursive importing of units.
bool m_recurse;

Code extracted from file gilf/Importer.hpp, lines 74 to 79.

A visitor’s declaration, the available constructors, and its data members are the skeleton
of every visitor implementation. Its semantics and behavior are expressed in the visi-
tor’s Visit methods. For every visited node type an overload of this virtual method is
required. The Visit methods for unit and import nodes of Importer call visit_children
on their child nodes (see section A.4.3), which results in invoking the corresponding
Visit methods. In the import node’s Visit method, the member m_input is reset. Finally,
method Visit for unit designators inflates the denoted unit using our deserialization
framework.

5.6 Instantiation Application

Once a unit’s internal GILF representation has been created together with the units listed
in its import dependencies, the instantiator commences operations, the central compo-
nent of the GILF prototype. Deserialized GILF contains generic constructs (see chapter 4),
which will be replaced by nongeneric instances during instantiation application. In this
section we will discuss GILF’s instantiation engine, which is realized as a visitor in class
Instantiator, similar to Importer, the unit import dependency resolver.

In general, the instantiator is started by calling the virtual method Accept of a GILF
node on an instantiator object. Instantiation starts at a function or type binding node,

4Class Unit_Store is an auxiliary class of the GILF library which allows convenient storage and retrieval
of GILF unit nodes.

5.6 · Instantiation Application 91

which describes an instantiation. The goal of an instantiation application is to resolve
all static instantiation parameters of a generic algorithm or data structure and create a
nongeneric, fully instantiated algorithm or data structure. This can require recursive
instantiations. After the instantiator returns, the requested instance and all recursively
created instances are placed into the global instance table (see section 5.4.2). Notice that
the results of instantiation application are still GILF nodes. Code generation can proceed
on these nongeneric nodes.

5.6.1 Approach

Before discussing implementation details, we present the general steps of instantiation
application. The process is divided into three major phases.

Phase 1: Signature evaluation. Phase 1 is devoted to setting up internal data structures
required for successful instantiation application. The algorithm’s or data structure’s
signature is visited and for all instantiation parameters, the corresponding identi-
fier is put as key into an associative container, the so-called id mapping table. For
algorithms, these identifiers include the dependent functions.

It is important to have access to the set of generated instances, as well as to those
instances currently under construction. Only with this information present one can
avoid infinite instantiation loops.

Phase 2: Instantiation parameter binding. The goal of the second phase is binding ev-
ery identifier in the created mapping table to an identifier of a nongeneric instance
of an algorithm or data structure. Of course, this can require recursive instantiation
applications. During recursive creation of an instantiator, the current instance set
has to be retained such that the protection against infinite instantiations in phase 1
remains functional.

The node visitation in phase 2 follows the current node’s static instantiation param-
eter bindings. After phase 2 has completed, all instantiation parameters residing in
the mapping table have to be bound to instance identifiers, otherwise the front-end
has produced illegal GILF code.

For nongeneric constructs, phase 2 is skipped. This is an important property that
ensures termination of instantiation application.

Phase 3: Instance generation. Finally, in phase 3 the requested instance is generated and
added to the global instance table. Instances of generic constructs require a man-
gled identifier name that denotes the generated algorithm or data structure, whereas
instances of nongeneric constructs simply keep their original identifier. A good
strategy for creating the instance’s mangled name is to use the identifiers in the
current construct’s mapping table. One should also take care to generate the same
instance only once.

Instance generation recursively visits the data structure or algorithm node and its
subnodes designated in the current binding node. During this visitation, references
to instantiation parameters are replaced by the corresponding values found in the
mapping table, which was created in the phase 1 and 2, or by recursively created
instances. All function, type, and instantiation parameter designators are replaced
by their corresponding data structure or algorithm designators.

92 Chapter 5 · The GILF Prototype

At this point, one can encounter unresolved function designators in the mapping
table. These designators occur because of the infinite instantiation protection in
phase 1. Nodes with such incomplete designator identifiers are put into a list and
patched in a final loop over the whole list at the end of phase 3.

During instantiation application, the GILF prototype can make inquiries to the algo-
rithm selection unit. This happens if load-time instantiation is configured and more than
one algorithm designator is present in a function binding. However, run-time instantia-
tion defers the requests to the selection unit until the execution of the generated program.

5.6.2 Visitation Graphs

The instantiator’s implementation is best understood by first looking at its visitation
graphs for type and function bindings. The visitation graph differs depending on two
orthogonal characteristics of the depicted construct. First, if the construct is generic or
nongeneric, and secondly, if the construct is built-in or not, determines the actual visita-
tion graph. Because the differences manifest in additional, but independent paths and
nodes, we present the full visitation graph for generic, user defined constructs. We will
explain the parts that are not present in the other cases.

Type Binding First, we look at the visitation graph for type bindings, illustrated in
figure 5.4.

bind-type type type-params type-param? *

bind-static-
params

bind-tp

bind-fp
binding-dsg

binding-dsg*

*

bind-func

data-dsg data

elem
* binding-dsg

static-param-dsg

P
ha

se
 1

P

ha
se

 2

P
ha

se
 3

func-params func-param? *

Figure 5.4: Visitation graph for types of visitor Instantiator.

In phase 1, we jump to the type node denoted by the identifier reference of the bind-
type visitation root node. If we arrive at a nongeneric type, traversal stops here.

For generic types, we visit their type-params and func-params subnodes, and their
instantiation parameter subnodes. From these, we extract the identifiers of the static
instantiation parameters that have to be bound during instantiation application.

Phase 2 is dedicated to binding the instance identifiers that correspond to all the in-
stantiation parameters found in the type’s signature during phase 15. Those bindings are

5As mentioned before, if we detected a nongeneric type in phase 1, the second phase is skipped altogether.

5.6 · Instantiation Application 93

stored in bind-static-params nodes, which are either direct subnodes of the visitation
root node, or reached indirectly through binding designators.

Now we follow the type and function parameter binding nodes one by one. Again,
the instance to which they are bound is either given directly through a type or function
binding, respectively, or indirectly by means of a binding designator pointing to such
bindings. Anyway, a recursive invocation of an instantiator is initiated6.

Finally, we proceed to phase 3. The type’s representation is denoted by a data desig-
nator, that points to the corresponding data node. Built-in data structures stop here, their
layout is implicitly determined. User defined data structures enumerate their layout with
element subnodes, which will be visited by the instantiator for instance generation. An
element’s type is given either by one of the instantiation parameters which were bound
to instance identifiers in phase 2, or by a binding designator pointing to a bind type node.
This will lead to a recursive instantiator invocation.

Function Binding The visitation graph for function bindings (see figure 5.5) is more
ramified than the one for type bindings which we examined above. We will concentrate
on the differences and extensions present in the graph for function bindings.

bind-func function type-params type-param? *

bind-static-
params

bind-fp

bind-tp
binding-dsg

binding-dsg*

*

bind-type

algo-dsg*

algorithm

param binding-dsg

static-param-dsg

P
ha

se
 1

P

ha
se

 2

P
ha

se
 3

func-params func-param? *

algo-dsg algorithm*

algo-dsg*

function

params *

stat-seq if

call

... static-param-dsg

binding-dsg

bind-param

bind-params
+

binding-dsg

expr

store

var

static-param-dsg

binding-dsg val

*

* const

Figure 5.5: Visitation graph for functions of visitor Instantiator.

Phase 1 is almost identical to the one for type bindings, however the instantiator
6The dotted line around the bind function node indicates this recursive invocation, but the visitation

graph for this path is presented separately in figure 5.5.

94 Chapter 5 · The GILF Prototype

also has to visit function instantiation parameters present in the designated algorithms
and add them to the mapping table. These parameters are the algorithm’s overloaded
function symbols depending on instantiation parameters that have to be resolved during
overload resolution.

Analogously, in order to fill the mapping table in phase 2 one has to track bindings of
instantiation parameters to instance identifiers also in the algorithm designators for the
corresponding algorithms. These extensions in both phases are only relevant for generic
algorithms, because a nongeneric function’s instantiator stops visitation at the function
node, and phase 2 is skipped.

The visitation graphs differ most in phase 3. Via the possibly multiple algorithm des-
ignators, the algorithm nodes are reached. Here, three major paths are taken. First, the
algorithm’s associated function node is visited in order to bind its dynamic value pa-
rameters to this instance’s data structures. Interestingly, this step is technically almost
identical to processing a data structure’s elements. Built-in algorithms can stop here, be-
cause their behavior is implicitly defined and the back-end has to generate code for them.
Next, the algorithm’s body inside the stat-seq node is visited. This step is trivial for most
nodes, because it simply consists of deeply copying the node’s content recursively. The
only exception is the call node. It has to be bound to the actual algorithm instance that
this call is representing, which is either given by an instantiation parameter taken from
the mapping table, or by a binding designator that leads to recursive invocation of the
instantiator. Furthermore, the call’s actual parameters have to be bound to expressions
for parameter passing. Finally, an algorithm’s local store of variables and constants has
to be processed. This is done analogously to the function’s parameters, which was de-
scribed above as the first step of phase 3. However, variables and constants also have a
second subnode of type val which represents the construct’s value. This node is required
for constants, and optional for variables.

5.6.3 Implementation

Class Instantiator is implemented as a visitor. We have already mentioned the typi-
cal problems associated with this strategy is section 5.5. The complex visitation graphs
depicted in figures 5.4 and 5.5 indicate that care has to be taken in order to keep the
instantiator’s implementation tractable. Instantiator inherits from Loki’s BaseVisitor
and from Visitor instances of all the nodes it has to visit, i.e. all the nodes present in
the visitation graphs. We only display the Visitor instances of the two root nodes in the
declaration for brevity.

〈Listing 5.25: Class Instantiator: Declaration〉 ≡
class Instantiator : public Loki::BaseVisitor,

public Loki::Visitor<Bind_Type>,
public Loki::Visitor<Bind_Function>,
...

Code extracted from file gilf/Instantiator.hpp, lines 73 to 107.

Type Definitions As usual, we define the central types for class Instantiator in the
header file. First, the type of the mapping table id_mapping_type is defined, which maps
type and function binding identifiers to their corresponding instance identifiers. Simi-
larly, we need a set container type instance_set_type that is used for keeping identifiers
of generated instances. Last not least, we provide a type for a sequence container holding
smart pointers to GILF nodes.

5.6 · Instantiation Application 95

〈Listing 5.26: Class Instantiator: Public Types〉 ≡
// Types that constitute id to id mappings.
typedef id_iprop::type id_key_type;
typedef id_iprop::type id_data_type;
typedef std::map<id_key_type, id_data_type> id_mapping_type;
// Set container type that holds ids of instantiations.
typedef std::set<id_iprop::type> instance_set_type;
// Sequence container type that holds GILF_Node sptrs.
typedef GILF_Node::sequence_type gnode_seq_type;

Code extracted from file gilf/Instantiator.hpp, lines 113 to 120.

Data Members The instantiator’s current phase is stored in member m_phase. The val-
ues of this member are taken from the enumeration Phase_Flag, and each instantiator’s
constructor initializes m_phase to phase 1, which corresponds to the enumeration value
Phase_Signature.

〈Listing 5.27: Class Instantiator: Phase Enumeration Constants〉 ≡
// Enumeration constants for the three phases of instance generation.
enum Phase_Flag
{
Phase_Signature = 1, // Phase 1 (Signature Evaluation)
Phase_Bind, // Phase 2 (Instantiation Parameter Binding)
Phase_Generate // Phase 3 (Instance Generation)

};
Phase_Flag m_phase;

Code extracted from file gilf/Instantiator.hpp, lines 251 to 258.

The instantiator’s complexity requires state of the instantiation process phases to be
stored inside the class’ data members. The mapping table mentioned during presen-
tation of the visitation graphs is stored in m_mapping_table. Preventing infinite instan-
tiation loops is of major importance for every instantiation engine. We avoid recursive
reinstantiations of already instantiated constructs with member m_instance_set which
holds all binding identifiers of the current and recursively called instantiators. Member
m_bind_ref holds the identifier of the instantiation parameter currently bound to an in-
stance identifier in phase 2. The identifier of the instance generated by this instantiator af-
ter successfully completing all phases is stored in member m_instance_id. In phase 3, all
references to instantiations will be replaced by the actual instance id. However, because
of the infinite recursion protection, we can find unresolved function binding identifiers in
the mapping table created in phase 2. They are queued in member m_unresolved_ids and
have to be patched at the end of phase 3. Member m_father is used in phase 3 to save the
father node during instance generation such that visited child nodes can be appended.

〈Listing 5.28: Class Instantiator: Data Members Related to Phases〉 ≡
// Mapping of instantiation parameter ids to instance ids.
id_mapping_type m_mapping_table;
// The set contains all the recusively requested instantiations of this
// instantiation. Is used to prevent infinite instantiation loops.
instance_set_type m_instance_set;
// Reference id of instance parameter that is currently bound in Phase 2.
idref_iprop::type m_bind_ref;
// The id of the instance that was generated by the Instantiator.
id_iprop::type m_instance_id;
// Sequence of nodes that contains unresolved binding ids. These happen
// because of skipped instantiations to avoid infinite instantiations loops.
gnode_seq_type m_unresolved_ids;
// Holds a pointer to the current father node, thus allowing to append cloned

96 Chapter 5 · The GILF Prototype

// child nodes in visitors. Either an algorithm or data node serves as the
// tree’s root of the monomorphic representation of a generic construct.
GILF_Node::sptr_type m_father;

Code extracted from file gilf/Instantiator.hpp, lines 262 to 277.

Patching the unresolved identifiers requires bookkeeping of the mappings from function
binding identifiers to the identifiers of the instance that resulted from instantiation appli-
cation. These mappings are stored in data member m_instance_mappings which is static,
because instantiators need access to all past mappings.

〈Listing 5.29: Class Instantiator: Data Member for Instance Identifier Mappings〉 ≡
static id_mapping_type m_instance_mappings;

Code extracted from file gilf/Instantiator.hpp, line 283.

Constructors We define two constructors for class Instantiator. The default construc-
tor ensures that the phase is properly initialized, and the copy constructor also saves the
state that is required for recursive instantiation application.

〈Listing 5.30: Class Instantiator: Constructors〉 ≡
Instantiator() : m_phase(Phase_Signature) {} // Default ctor.
Instantiator(const Instantiator& inst) : // Copy ctor, retains state.
m_phase(Phase_Signature),
m_instance_set(inst.m_instance_set),
m_unresolved_ids(inst.m_unresolved_ids) {}

Code extracted from file gilf/Instantiator.hpp, lines 125 to 129.

Methods Apart from the virtual Visit methods for all visited node types, Instantiator
provides only one public method which allows retrieving the identifier of the generated
monomorphic instance.

〈Listing 5.31: Class Instantiator: Method for Retrieving the Instance Identifier〉 ≡
id_iprop::type get_instance_id() { return m_instance_id; }

Code extracted from file gilf/Instantiator.hpp, line 176.

A common action during visitation is to jump to a node given by its reference identifier.
We support this with the private method visit_node_by_ref. The first parameter is the
identifier of the target node at which visitation should continue. This node is looked up in
the global symbol table g_symbol_table, and a standard exception of type runtime_error
is thrown of no such node is found. The second parameter is a pointer to an instantia-
tor. If it is set to 0 which is the default value, the current instantiator is reused. Other-
wise, visitation continues with the provided instantiator, which is needed for recursive
instantiation applications. Method visit_nodes_by_type allows visiting direct subnodes
restricted by their type, similar to the general facility presented in listing A.31.

〈Listing 5.32: Class Instantiator: Method for Visiting a Node by Identifier Reference〉 ≡
void visit_node_by_ref(const idref_iprop::type& ref,

Instantiator* instantiator = 0);
Code extracted from file gilf/Instantiator.hpp, lines 198 to 199.

Two methods aid in generating the monomorphic instance of a generic algorithm of data
structure, the final outcome of instantiation application. The first one called append_node
clones the node passed to it and appends it to the current father node stored in data
member m_father. It also returns a smart pointer to the cloned node.

〈Listing 5.33: Class Instantiator: Method for Appending a Node〉 ≡
GILF_Node::sptr_type append_node(GILF_Node& node);

Code extracted from file gilf/Instantiator.hpp, line 220.

5.6 · Instantiation Application 97

The second method in this category, deep_copy, performs a deep node copy starting at
node, the sole parameter. The copied hierarchy is appended to the current father node.
This method is a shortcut for visiting statement nodes and simply copying them manu-
ally inside Visit methods.

〈Listing 5.34: Class Instantiator: Method for Deeply Copying a Node〉 ≡
void deep_copy(GILF_Node& node);

Code extracted from file gilf/Instantiator.hpp, line 236.

During the discussion of visitation graph 5.5 we pointed out the call node as exception
in the statement node. It requires special treatment, because it contains parts that have
to be transformed. Therefore, method deep_copy checks for call nodes and escapes to
regular visitation by calling the call node’s Visit method.

〈Listing 5.35: Class Instantiator: Escaping Method deep_copy to Continue Visitation〉 ≡
if (typeid(node) == typeid(Call))
{
node.Accept(*this);

}
Code extracted from file gilf/Instantiator.cpp, lines 1470 to 1473.

The private method resolve_ids is dedicated to patching the unresolved binding ref-
erence identifiers queued in data member m_unresolved_ids. It iterates over all nodes
stored in the sequence container and looks up the according reference identifiers in the
instance mapping table (see listing 5.29).

〈Listing 5.36: Class Instantiator: Method for Patching Unresolved References〉 ≡
void resolve_ids();

Code extracted from file gilf/Instantiator.hpp, line 246.

Visit Methods A visitor’s behavior is defined inside its Visit method overloads. Of
course, this is also true for class Instantiator. We will present the most important code
sections from these methods that go beyond simply tracking the visitation graphs.

Every instantiation application starts at a Bind_Type or Bind_Function node. We
present the Visit method’s central parts for the first one, it shows the top-level con-
trol flow for entering the three instantiation phases. Method Visit for function bindings
exhibits no significant differences to this method.

〈Listing 5.37: Class Instantiator: Outline of Method Visit(Bind_Type&)〉 ≡
void Instantiator::Visit(Bind_Type& node)
{
print_prolog(node);
g_log(lc_std, lt_low) << "Instantiator generates instance for this id:\n";
g_log(lc_std, lt_low) << node.data.at<id_iprop>() << "\n";

// (Phase 1) Get the signature.
<see Listing 5.38 on page 97>
// (Phase 2) Read instance description.
<see Listing 5.39 on page 98>
// (Phase 3) Generate instance.
<see Listing 5.40 on page 98>

}
Code extracted from file gilf/Instantiator.cpp, lines 96 to 148.

Before actually collecting all instantiation parameters for initializing the mapping table,
we have to check that we did not already generate this instance. This is achieved by
examining the instance set. If the identifier is present, the instantiator’s instance identifier
is set to this binding’s identifier and the method returns prematurely. Otherwise, the

98 Chapter 5 · The GILF Prototype

identifier is added to the instance set and phase 1 starts by visiting the node indicated by
the current node’s reference identifier.

〈Listing 5.38: Class Instantiator: Phase 1 for Type Bindings〉 ≡
m_phase = Phase_Signature;
m_mapping_table.clear();
// Check the binding’s id for existence in the instance set.
id_iprop::type id = node.data.at<id_iprop>();
if (m_instance_set.count(id) == 0)
{
// Not present, simply add the id and continue.
m_instance_set.insert(id);

}
else
{
// Already present. We have to avoid the endless recursion problem of
// recursively referenced bindings.
m_instance_id = id;
return;

}
// Id reference of Bind_Type points to the type signature.
visit_node_by_ref(node.data.at<idref_iprop>());

Code extracted from file gilf/Instantiator.cpp, lines 104 to 121, referenced in listing 5.37.

When proceeding to phase 2, the data member m_phase is updated accordingly. If the
mapping table filled in phase 1 is empty, we skip phase 2 because we deal with a non-
generic data structure. For a generic data structure we bind the instantiation parame-
ters in the mapping table by visiting the nested static parameter binding node and those
reached via binding designators.

〈Listing 5.39: Class Instantiator: Phase 2 for Type Bindings〉 ≡
m_phase = Phase_Bind;
if (!m_mapping_table.empty())
{
// Visit the one Bind_Static_Params child node.
visit_nodes_by_type<Bind_Static_Params>(node, true);

// Now also follow binding-designators that point to further
// bind-static-params elements.
visit_nodes_by_type<Binding_Designator>(node);

}
Code extracted from file gilf/Instantiator.cpp, lines 125 to 134, referenced in listing 5.37.

Phase 3 generates the instance described by this type binding. For this purpose, it visits
the data designator subnode, which will result in a new entry into the global instance
table. We also save the mapping from the current binding’s identifier to the identifier of
the generated instance in data member m_instance_mappings.

Notice that function bindings can contain multiple algorithm designators, and if we
have chosen load-time instantiation, we have to query algorithm selection unit for the
fittest algorithm (see [Kre02]).

〈Listing 5.40: Class Instantiator: Phase 3 for Type Bindings〉 ≡
m_phase = Phase_Generate;
// Visit the data structures pointed to by data designators and generate
// the instances from them.
visit_nodes_by_type<Data_Designator>(node);
// Register the mapping of binding id -> instance id.
g_log(lc_std, lt_medium)

5.6 · Instantiation Application 99

<< "Generated instance [" << m_instance_id
<< "] for binding [" << id << "].\n";

m_instance_mappings[id] = m_instance_id;
Code extracted from file gilf/Instantiator.cpp, lines 138 to 146, referenced in listing 5.37.

Phase 1 executes by walking down the visitation hierarchy until nodes are reached that
represent instantiation parameters. These are added to the mapping table. Notice how
the value type’s default constructor is called to create an empty value along with the
parameter’s identifier used as key into the table. This code section is extracted from
method Visit(Type_Param& node).

〈Listing 5.41: Class Instantiator: Creating Entry in the Mapping Table in Phase 1〉 ≡
id_mapping_type::const_iterator it = m_mapping_table.find(id);
if (it == m_mapping_table.end())
{
g_log(lc_std, lt_low)
<< "Adding type-param " << id << " to current type map.\n";

// Add id as key with empty value.
m_mapping_table[id] = id_data_type();

}
Code extracted from file gilf/Instantiator.cpp, lines 368 to 375.

The core functionality of phase 2 is implemented in the visitors for type and function
parameter binding nodes. On entrance to these methods we have to validate that the
instantiation parameter that will be bound is actually stored in the mapping table. If
this is the case, we arrive either directly or through the detour of a binding designator at
a type or function binding that describes the instantiation parameter’s bound instance.
This requires recursively generating this instance first.

The following listing taken from method Visit for Bind_Type_Param nodes shows
how a new instantiator is created with a copy constructor from the current one. Then
visitation is started with this instantiator by accepting a type binding, which is stored in
the first position of sequence nodes. After the instantiator has performed its task, we can
update the mapping table with the identifier of the generated instance. This recursive
process ends when nongeneric constructs are encountered.

〈Listing 5.42: Class Instantiator: Recursive Instantiation in Phase 2〉 ≡
// Recursively call the instantiator on a bind-type node.
Instantiator instantiator(*this);
nodes[0]->Accept(instantiator);
// Set the type parameter to the calculated instance id.
m_mapping_table[m_bind_ref] = instantiator.get_instance_id();

Code extracted from file gilf/Instantiator.cpp, lines 483 to 487.

Phase 3 processing really starts at data and algorithm nodes, respectively. At these nodes
the top-level structure of instance generation is clearly visible. It starts with mangling
the identifier of the monomorphic instance. The mangled name is created by appending
the instantiation parameter identifiers from the mapping table to the data or algorithm’s
identifier. For nongeneric constructs, the mangled name equals the original one.

〈Listing 5.43: Method Visit(Algorithm& node): Name Mangling in Phase 3〉 ≡
// Name mangling to create new instance id.
m_instance_id = node.data.at<id_iprop>();
id_mapping_type::const_iterator it = m_mapping_table.begin();
while (it != m_mapping_table.end())
{
m_instance_id += "." + (*it).first;
m_instance_id += "(" + (*it).second + ")";
++it;

100 Chapter 5 · The GILF Prototype

}
Code extracted from file gilf/Instantiator.cpp, lines 939 to 947.

Next, we initialize the instantiator’s father node by cloning the visited algorithm node. It
is crucial to replace the cloned node’s identifier with the instance identifier created in the
preceding steps, because the cloned node will be the root node of the generated instance.

〈Listing 5.44: Method Visit(Algorithm& node): Initializing the Monomorphic Instance〉 ≡
// Clone algorithm top node and set id to new mangled id.
m_father = clone_node(node);
// Set the id to the instance id.
boost::shared_ptr<Algorithm> algo_clone =
boost::shared_dynamic_cast<Algorithm, GILF_Node>(m_father);

if (algo_clone.get() != 0)
{
algo_clone->data.at<id_iprop>() = m_instance_id;

}
Code extracted from file gilf/Instantiator.cpp, lines 972 to 980.

Instance generation proceeds according to the visitation graph shown in figure 5.5. First,
we visit the algorithm’s value parameter nodes. Then, the algorithm’s local storage is
processed, which consists of variables and constants, and finally the algorithm’s body is
appended to the monomorphic instance. At this point, we have generated a complete
instance which was described by the function binding where instantiation application
started. Therefore, we add the father node that holds the instance to the global instance
symbol table.

〈Listing 5.45: Method Visit(Algorithm& node): Instance generation〉 ≡
// First, append the transformed value parameters, to be found in the
// function signature.
visit_node_by_ref(node.data.at<idref_iprop>());
// Then, append the local storage section.
visit_nodes_by_type<Storage>(node);
// Last, append the algorithm body.
visit_nodes_by_type<Statements>(node);
// Add the generated instance to the instance table.
g_instance_table.add(m_instance_id, m_father);

Code extracted from file gilf/Instantiator.cpp, lines 985 to 993.

One can encounter binding designators while traversing the hierarchy of an algorithm
node. These point to function or type bindings, thus requiring recursive instantiation.
Listing 5.42 already depicted this procedure. But during instance generation, such nodes
have to be replaced by designators to the generated instances. The following listing
shows the necessary code. A new designator is created using the global GILF node fac-
tory. The type of the created node depends on the type of the designated binding node,
which is either a function or a type binding. We recognize this type by looking at the
node’s identifier prefix. The new node’s identifier is then set to the identifier of the recur-
sively created instance. This way we ensure that the algorithm node will not contain any
generic constructs.

〈Listing 5.46: Method Visit(Binding_Designator& node): Designator Replacement〉 ≡
// Use factory to produce node & downcast for id setting.
GILF_Node::sptr_type new_node;
if (id_has_prefix(ref, "bt"))
{
new_node = g_node_factory->create(c_node_id_data_dsg);
node_cast<Data_Designator>(new_node)->data.at<idref_iprop>() = id;

}

5.6 · Instantiation Application 101

else if (id_has_prefix(ref, "bf"))
{
new_node = g_node_factory->create(c_node_id_algorithm_dsg);
node_cast<Algorithm_Designator>(new_node)->data.at<idref_iprop>() = id;

}
m_father->push_back(new_node);

Code extracted from file gilf/Instantiator.cpp, lines 667 to 679.

The same procedure is required for instantiation designators, but the recursive instance
generation did already take place in phase 2. The identifiers of the replacement designa-
tors are therefore looked up in the mapping table.

A simple translator from nongeneric GILF to C++ is sketched in section B.2, focusing
mainly on the problematic constructs. It is also implemented as GILF node visitor.

5.7 Summary

The goal of this chapter was to provide a detailed description of the GILF system’s proto-
type implementation. We first presented a short overview of modern C++ programming,
followed by the prototype’s module and library structure and the coding conventions
employed in the implementation. Then we described the internal GILF representation
on which further processing is based after deserialization. We also showed how node
allocation is hidden behind a factory interface. Next two general facilities were touched,
namely logging and symbol tables. Thereafter, an introduction to visitation of GILF nodes
is given, which is the basis for all following transformation steps. The most important
one, GILF’s instantiation engine, is then discussed in great detail. It transforms full GILF
into monomorphic GILF with all generic components removed by instantiation applica-
tion.

Chapter 6

Related Work

6.1 Genericity

This section will give a short overview of the current state of generic programming re-
search and languages. It will show how GILF aids in constructing compilers for such
languages and how different features map to GILF constructs. A general introduction to
generic programming is given in chapter 2.

6.1.1 Classification

Code reuse is a major goal in software engineering. Polymorphic languages support the
programmer in this task by allowing functions and types to be applicable to parameters
of more than one type. The different kinds of polymorphism were first identified by
Strachey [Str67]. This classification was later refined by Cardelli and Wegner [CaWe85]
and is illustrated in figure 6.1.

Polymorphism

Universal

Ad Hoc

Inclusion

Parametric

Overloading

Coercion

Figure 6.1: Classification of polymorphism according to Cardelli/Wegner.

Polymorphism is subdivided into two main categories, universal and ad hoc poly-
morphism. Informally, the distinction between them is that universally polymorphic
functions operate uniformly on a possibly infinite range of types, whereas ad hoc poly-
morphism is achieved by a function that works for a fixed set of types, maybe in unrelated
ways.

Cardelli and Wegner extended Strachey’s original classification with inclusion poly-
morphism, which models subtyping and inheritance in object oriented languages. Notice
that parametric polymorphism usually relies on overloading after instantiation, as func-
tion symbols and identifiers like +, *, id and so on will be bound to the correct function
call with overload resolution. Identifier renamings like in Theta [LiCuDa+95] or Tecton

6.1 · Genericity 103

[Mus98] are an alternative or complementing approach for solving this particular prob-
lem of parametric polymorphism. For a more detailed discussion of the interrelations
between the different kinds of polymorphism see [CzEi00], section 6.7. In this thesis,
we primarily tried to solve problems associated with parametric polymorphism at the
compilation level. However, we do not completely agree with Cardelli and Wegner’s
assessment of parametric polymorphism, which directly reflects the implementation of
ML-style functional programming languages:

... in true polymorphic systems code is generated only once for every generic
procedure. ([CaWe85], p. 7)

This is achieved by representing data uniformly1 in some way, usually by using a
pointer representation to a structure with more information. Of course, this indirection
comes with a run-time overhead and simply hides the different treatment of different
instantiation types of generic code. We do not want to accept this penalty and relax
their statement by saying that intermediate code is generated only once for every generic
procedure.

Type parameters can be present either explicitly or implicitly. Most languages apply
the rule that declarations of generic constructs have to explicitly state type parameters,
whereas type parameters are inferred or deduced when instantiations are used.

In type theory, universal quantification is used to model generic functions and types,
bounded quantification for subtypes and type inheritance, and existential quantification
for abstract data types. In [CaWe85], the reasonable combinations of these orthogonal
concepts are explained and evaluated. However, simple bounded quantification lacks
expressive power when applied to generic functions that involve recursively defined
types and recursive bounds, like binary methods [BrCaCa+95]. F-bounded polymor-
phism [CaCoHi+89] is considered a good compromise between expressive power, com-
plexity and tractability, and still allows handling the typical cases where simple bounded
quantification fails. Even F-bounded polymorphism fails on some desirable cases, which
are discussed in [DaGrLi+95]. Substantial work has been poured into research on type
systems that combine inclusion polymorphism, the kind of polymorphism central to ob-
ject oriented languages, with parametric polymorphism [EiSmTr95] [Bru93] [BrFiSc95]
[BrOdWa98] [Lit98].

Constrained Genericity Constraining the legal instantiation of generic constructs is
a major issue in designing a generic programming language. A thorough exploration
of the design space of this feature is given in [Lit98]. Litvinov establishes the following
categories of constrained genericity:

Instantiation-Time Checks Languages in this category allow completely unconstrained
generic constructs. Every instantiation is checked by itself, which leads on the one
hand to very flexible code, but on the other hand requires the source code of generic
components for type checking their instantiations. The role models for this kind
of generic programming languages are C++, Ada, and Modula-3. However, the
C++ instantiation model permits to enforce instantiation constraints at compile time
[SiLu00].

F-bounded Quantification As noted above, F-bounded quantification [CaCoHi+89] al-
lows expressing mutually recursive bounds. Some Java dialects, for example Pizza

1The term boxed representation is commonly used in this context.

104 Chapter 6 · Related Work

[OdWa97], its successor GJ [BrOdSt+98], and [AgFrMi97], support it as their mecha-
nism for constraining instantiations. Also, the Strongtalk type system for Smalltalk
employs F-bounded polymorphism [BrGr93].

Signature Constraints and Structural Subtyping The first programming language that
supported constrained parametric polymorphism was CLU [Lis92]. It used where-
clauses to list signatures that have to be supported by legal instantiation type argu-
ments for generic functions. This signature list introduced a kind of protocol type,
and all types that conform to this protocol implicitly are treated as subtypes. The
same mechanism was later carried over to Theta [LiCuDa+95] and PolyJ [MyBaLi97],
a Java extension. It is also present in Cecil [Cha98], but Cecil also offers mutually
recursive subtype bounds. This implicit, structural subtyping is usually seen in
contrast to explicit subtype relations, as in (F-)bounded quantification. The advan-
tage of explicit subtyping is that accidental false conformance is not possible, which
is sometimes an issue with structural subtyping, e.g. in the notorious example with
a draw method that can belong to both a GraphicalObject and a Cowboy class. No-
tice that Strongtalk dropped implicit structural conformance with brands in a later
version [Bra96] in favor of explicit subtyping.

SelfType or Matching Another problematic case are methods that return results of its
own type. Some languages like Strongtalk [BrGr93] offer a special SelfType that
can be used in method signatures and will be resolved to the actual instantiated
subtype. This allows exact typing of binary and related methods. Matching is an-
other mechanism that exhibits similar expressiveness, it can be found in PolyTOIL
[BrFiSc95] and Emerald [RaTeLe+91]. Required functions are related to a type pa-
rameter of the function itself. In general, both methods provide convenient syntax
for common idioms but are less powerful than F-bounded polymorphism.

Covariant Redefinition Finally, some languages allow the definition of anchor types in-
side functions and classes. The anchor type is the upper bound of the possible
instantiation types. Instantiations of the general function or class are performed
by explicitly deriving from it and narrowing the anchor type to a more specialized
typed. This mechanism was proposed for Java by Thorup [Tho97] [ThTo99], and is
also available in Eiffel [Mey92].

The approach taken in the SUCHTHAT project goes beyond these techniques, which
all rely on the semantics established by the relations between types. We also rely on
a strong type system, but the type hierarchy is determined in the TECTON specification
system, which results in extensive semantic guarantees. It is even intended to connect the
specification system with an off-line archive of proven properties of the type hierarchies.

In SUCHTHAT, we have a fully static type system, and this is reflected by the available
features in GILF. In general, type systems can have both a static and a dynamic part, for
example Scheme [KeClRe98] is a dynamically typed functional programming language,
all type checks are performed at run time.

Finally, a classification of the typical usage scenarios for generic programming is pre-
sented. These can be split in two categories, which complement each other. First, the
main target of generic programming is of course writing data structures and algorithms
that operate on a wide range of related types in a uniform way. This is exactly how con-
tainer or collection classes are designed, like in the STL [MuDeSa01] or Java’s collection
classes and interfaces [BrCoKe+01]. The second important application of parameteriza-
tion is adapting the behavior of generic constructs in a flexible yet efficient way. The key

6.1 · Genericity 105

to this technique is realizing that type parameters can be function types. For example, the
way a container is sorted can be changed by passing a function object to the sorting algo-
rithm of the STL, which defines the ordering relation between elements. This approach
can be applied also at the module level, which leads to parameterized programming,
proposed by Goguen [Gog96]. Ada’s package system [Bar95] is a restricted incarnation
of this idea. In C++, parameterizing the behavior of components has attracted great at-
tention. Alexandrescu propagates policy based programming [Ale01] that fosters the
construction of reusable components, for which almost every behavioral aspect can be
adapted by the user. A simple application of this idiom are container adaptors like STL’s
stack. Summarizing, both techniques are well suited for creating libraries that offer a
high degree of reusability.

6.1.2 Generic Libraries

Generic programming’s primary focus is developing reusable software components. The
components are collected and distributed in generic libraries. Significant progress in
generic programming manifests in such libraries. This section will provide an overview
of the major contributions in this area.

Standard Template Library (STL) The STL [StLe95][MuDeSa01] is perceived as the first
library that follows consequently the philosophy of generic programming understood
as requirement oriented programming. Structuring a library according to this principle
is now often referred to as in the spirit of the STL or STL-like. The STL has become a
part of the C++ Standard Library [ISO14882], but the term is generally used to denote
the collection of data structures and algorithm that constitute the original STL. There
are many publications available on the STL [Aus98] [MuDeSa01] [Mey01], which give
detailed descriptions of its underlying concepts and provide extensive reference material.

Pragmatically, the STL consists of homogeneous container classes that allow access-
ing and visiting stored elements with iterators. Algorithms operate on and manipulate
ranges of elements which are delimited by these iterators. An algorithm’s behavior can
be adapted by function objects, and allocators allow the customization of memory alloca-
tion strategies for containers. Finally, adaptors provide interface adaptions, for example,
in some STL implementations a reverse iterator is just an adaptor of a regular itera-
tor. So what makes the STL special? There are two points that set the STL apart from
previous collection libraries:

1. By separating orthogonal concerns of the problem domain like element traversal
and access with iterators, element storage in containers and algorithms operating
on element ranges, and parameterizing these concepts appropriately, the STL pro-
vides a flexible, efficient and extensive framework for generic components.

2. All concepts in the STL are rigorously annotated with requirements, thus clearly
stating which instantiations of data structures and algorithms are valid, and how
efficiently they compute.

For todays C++ compilers, STL implementations have to be available in source code
for type checking. This problem partially motivated the work on GILF, because distribut-
ing generic libraries in a standardized intermediate language is more convenient than in
source form.

106 Chapter 6 · Related Work

Matrix Template Library (MTL) One of the first libraries to apply the methodology pi-
oneered in the STL to another problem domain was the Matrix Template Library (MTL),
developed at Indiana University. The MTL is an effort to develop a high-performance
numerical linear algebra generic library [SiLu99] [SiLu98a]. There are two major goals
that the authors want to reach. First, they want to reduce the size of other numerical
linear algebra packages which is caused by the combinatorial possibilities to arrange pre-
cision types, matrix types, and algorithms operating on them. Second, in order to reach
this goal they do not want to sacrifice run-time performance, a very important aspect in
scientific computing,

As it turns out, generic programming provides the right mechanisms to reconcile this
competing targets. The MTL consists of a small collection of algorithms that operate on
vectors and matrices. In MTL, a matrix is a composition of its orthogonal aspects, namely
its element type, orientation, shape, and one and two dimensional storage strategy. Ev-
ery aspect can be extended by the library user if his provided type complies to certain
requirements. The possibility to parameterize algorithms with all composed matrix and
vector types leads to MTL’s comprehensiveness at small source code size. This is carried
even further by providing adaptors and special iterators that enable reusing the same
algorithms in more situations. For example, in BLAS the dedicated function daxpy is
responsible for adding a vector to a scaled vector, whereas in MTL this is achieved by
calling the generic add algorithm with the first argument adapted.

// perform: y := ax + y
add(scale(x, a), x, y); // MTL
daxpy(n, a, x, 1, y, 1); // BLAS

As in the STL, the key to combining algorithms and data structures are iterators. MTL
uses an extended iterator concept for dealing with the two dimensional nature of its ma-
trix components. In general, at the first level 2D iterators allow access to rows or columns,
which export 1D iterators for accessing single matrix elements. Notice that this fully gen-
eral approach handles all matrix representations.

The second goal of the MTL, high performance, is guaranteed mainly by two means.
Static (parametric) polymorphism in generic libraries removes the overhead associated
with inclusion parameterization often found in object oriented libraries2. Furthermore,
the application of template metaprogramming techniques allow generation of efficient
kernel routines in C++ without resorting to external code generation tools. These ker-
nels are used in more general algorithms, which can be configured according to cache
hierarchy idiosyncrasies, also using template metaprogramming. This enables portable
optimizations even for different architectures [SiLu98b] [SiLu98c].

The VIGRA Computer Vision Library Another generic library that deals with 2D data
structures is VIGRA [Köt99] [Köt00], a library designed for image processing. Again,
code economy without loss of efficiency is achieved by separating image representation
from algorithms manipulating them with the help of iterators. This time, rectangular
regions of interest (image windows) are framed by a set of boundary marks. These are all
the pixels next to border pixels of the real image. ImageIterators present horizontal and
vertical views on the region. Algorithms operate on regions delimited by an upperleft
iterator, pointing to the first pixel in the image, and a lowerright iterator, pointing to
the boundary mark one pixel right and below the last image pixel. Functors (function
objects) introduce the needed flexibility into the small set of algorithms.

2Effective small object optimization is crucial in this respect.

6.1 · Genericity 107

One interesting feature of VIGRA is that mutating data access via iterators is more
general than in the STL, using the data accessor idiom [KüWe97]. This makes sense for
VIGRA, as image representations like banded RGB do not allow application of the STL
reference semantics of operator*() for data access. Furthermore, iterator adaptors play
an important role in visiting pixels in advanced settings. For example, a line iterator
adaptor visits pixels along an arbitrarily directed line.

Applying the generic programming paradigm in this problem domain was more suc-
cessful than object oriented methodology because the inability of compilers to inline and
optimize virtual function calls resulted in a big performance impact due to the large data
sets typically encountered in image processing.

The Boost Graph Library (BGL) One of the most advanced generic C++ libraries is
the Boost Graph Library [SiLeLu01]. Again, graph data structures are parameterized
class templates that are connected to algorithms by iterators. Graphs are more complex
data structures than standard containers, therefore the interfaces of these components are
richer.

Vertices and edges are handled through descriptors. The types of these descriptors
can vary for each instantiation and are accessible through the graph traits class. Ar-
bitrary data can be attached to vertices and edges by means of property maps, which
provide a general interface to set and query a property’s value with a tag, similar to
STL’s associative containers.

A graph can either be stored as an adjacency list for sparse graphs or an adjacency
matrix for dense graphs3. Traversal of graphs is handled by iterators, which work either
on edges, vertices, or the graph’s adjacency structure. For example, the vertices(g)
function returns a sequence of all edges belonging to graph g inside a std::pair, which
contains two edge iterators, one pointing at the first edge, the other one past the last edge.

Generic graph algorithms operate on these graph data structures, navigating them
with the graph’s vertex and edge iterators. There are three fundamental algorithm pat-
terns, breadth first search, depth first search, and uniform cost search. All real graph
algorithms like Dijkstra’s Shortest Path are written in terms of the algorithm patterns.
This generality is accomplished with visitors, a extension of the STL’s function objects.
Instead of just overloading the application operator, visitors provide a set of functions
that are called at special event points when traversing the graph, for example start/fin-
ish edge or examine edge. Finally, graph adaptors allow to access data structures from
other graph libraries, like LEDA and Stanford Graphbase, or to present a different view
of a given graph, like filtered graph.

Loki The last library we want to mention is Loki [Ale01], which uses type parameteri-
zation and template metaprogramming extensively, but strikes at different goals than the
other presented libraries. Loki provides on the one hand low-level facilities like type lists
and hierarchy generators. Based on these utilities, highly customizable generic design
patterns are built. A generic design pattern tries to capture the essential behavior of the
related pattern and makes them customizable by introducing them as special template
parameters, so-called policies. Default policies implement the most often used instantia-
tions, but the library user can adapt all parameterized behavioral aspects of the pattern
template by providing hand-crafted policies. Loki contains generic patterns for smart
pointers, functors, singletons, factories, visitors, and multimethods.

3But the actual implementation of the used containers can be selected at instantiation time.

108 Chapter 6 · Related Work

The ability to manipulate types, and especially type lists, at compile time is being rec-
ognized as useful in generic programming. Even in functional programming languages,
similar observations were made [Hal01]. Furthermore, policy based design leads to ex-
tremely flexible generic components. It is even considered to extend STL containers with
policy parameters.

6.1.3 Programming Languages

To conclude this section, a short summary of programming languages that support gener-
icity is given.

ML [MiToHa+97] was the first language to feature parametric polymorphism, based
on Milner’s type calculus. It can be seen as the archetype for most functional program-
ming languages that use type inference to recover some of the positive effects of strong
typing, like early error detection and efficient code generation. Structures and signatures
allow interface and implementation separation in ML, as well as constraining definitions
of polymorphic code. In Haskell [JoHu98], type classes [JoJoMe97] were introduced to
structure overloaded functions4.

The first language to include constrained parametric polymorphism was CLU [Lis92]
with where clauses, later also present in Theta [LiCuDa+95]. This approach to constrain-
ing genericity was discussed above. Theta is otherwise a pure object oriented language.
Many other object oriented programming languages offer type parameterization, for ex-
ample Eiffel [Mey92], Cecil [Cha98], a dialect of Smalltalk called Strongtalk [Bra96], and
extensions to Java. Constraining type parameters by a subtype relation is natural in this
setting.

The Java extensions fall into three categories. First, PolyJ [MyBaLi97] introduces
structural subtyping to Java. Requiring a subtype relation, for example with F-bounded
polymorphism or a related variant, is the most frequent mechanism. It is present in
Pizza [OdWa97], NextGen [BrOdSt+98], GJ [BrCoKe+01], and [AgFrMi97]. Finally, an
approach based on covariant redefinition, called virtual types, was presented by Thorup
[Tho97] [ThTo99].

Even to Oberon, a successor of Pascal, an extension with parametric polymorphism
was proposed [RoSz97]. It allows type parameterization for reference types only, thereby
simplifying the implementation considerably5. In addition, the programmer is aware of
the explicit cost due to the pointer indirection.

Last not least, genericity is also available in popular industrial multi-paradigm pro-
gramming languages. C++ [ISO14882] [Str97] was mentioned throughout this text, and
several generic libraries implemented in C++ were described above. Type and value pa-
rameterization is available as class and function templates in C++. Type deduction allows
omitting explicit type arguments for most instantiations. The most controversial feature
of C++’s template mechanism is its lack of constrained genericity. Partial solutions were
presented [SiLu00], but they only alleviate the problems. Ada [Bar95] is another example
of a mainstream language with generics. Contrary to C++, it allows stating requirements
on type parameters, which was exploited in an conversion of the STL to Ada95 [ErKo96].
In Ada, all used generic components have to be instantiated explicitly. This has shown
unwieldy when generics are extended, but avoid misinterpretations of the programmer’s

4In [Lit98], type classes are categorized as a kind of F-bounded polymorphism.
5In their implementation, the authors used Oberon’s reflective features to gain exact type information for

operations that were dependent of type variables at run time, for example new. The same approach was later
proposed for Java implementations [SoAl98] [Vir01].

6.1 · Genericity 109

intent by the compiler. Ada also has a generic package concept, motivated by Goguen’s
ideas on parameterized programming [Gog96]. However, packages are not valid package
parameters themselves. Modula-3 [CaDoGl+89] provides genericity at the module level.
In a generic module, some of the imported interfaces are regarded as formal parameters.
In order to instantiate such a module, these interfaces have to be bound to actual inter-
faces. Generics in Modula-3 were kept simple intentionally, because genericity in Ada
was considered too complicated.

C++, Ada, and Modula-3 all have in common that type checking is performed at in-
stantiation time. This fact and their nonuniform type system forces them to reuse generic
components from source code.

6.1.4 Discussion

In this section we touched general, high-level topics on generic programming. Presently,
GILF supports a reasonable amount of features such that a source language with simi-
lar design as SUCHTHAT can be easily mapped to GILF. The separation of instantiation
analysis and application enables handling most semantic issues in the front-end and pass
those decisions to the back-end.

However, two main properties of generic languages and libraries can only be trans-
lated into GILF with elaborate manual work. First, dynamic polymorphic behavior as
present in most object oriented languages is not supported. This seems a valid omis-
sion, as we wanted to concentrate on the problem at hand, instantiating generic data
structures and algorithms. Furthermore, template metaprogramming has become an im-
portant part in efficient generic C++ libraries. This compile time technique is also not
supported in GILF. It relies on partial template specialization. Such a feature would have
introduced a significant bottleneck in the back-end, and we wanted to keep high-level
semantics decisions in the front-end. Looking at the use cases of template metaprogram-
ming, manipulating types and type lists is most relevant for genericity. No established
theory handles this problem satisfactorily. This is a good candidate for a future extension
of GILF if more experience is gathered in this area.

Constrained genericity is adequately handled in GILF. At the intermediate language
level, the constraints are reduced to a list of required signatures (see section 4.8.2), very
similar to where clauses. Binding these signatures to algorithms are the minimal require-
ments for generating code, and resolving these bindings places no special burden on the
back-end, as all semantic considerations of the front-end are passed in the binding sec-
tion.

6.2 Intermediate Representations

The GILF specification is a central part of this thesis. Other work done in the area of
intermediate representations will be examined in this section. We concentrate on systems
where the intermediate language was central to the design.

6.2.1 Nongeneric Intermediate Representations

UNCOL The desire for a target independent intermediate representation in compiler
construction dates back to historical projects like UNCOL, an attempt to create a univer-
sal computer-oriented language [Con58]. The aim was to generate an intermediate language
that is targeted by compilers of problem-oriented languages. The premise of the UNCOL

110 Chapter 6 · Related Work

project was “a computation in terms of a sequence of operations, each of which operates
on information stored in machine registers or alters the sequence of operations” ([Con58],
p. 5). Various back-ends should translate UNCOL to machine languages of existing hard-
ware. Although discussed, UNCOL was never realized.

P-Code P-Code [NoAmJe+76] is the intermediate language used in most compilers of
the programming language PASCAL. Despite its age, P-Code has features that are still
used in contemporary systems. P-Code is an assembler language that assumes a virtual
stack machine, the P-machine. Instructions are put in four classes, stack manipulation,
data control, execution control, and special instructions. The available instructions where
influenced by the semantics of PASCAL, for example procedures in P-Code map directly
to PASCAL procedures.

Porting a P-Code system to another platform consists of porting either a P-Code in-
terpreter or a P-Code translator to the new machine language, as well as the platform
specific standard procedures for input and output, heap management and mathemati-
cal functions. P-Code was quite successful, many variants where developed [Nel79] in
order to satisfy diverging demands, like space efficiency. The most famous variant is U-
Code [PeSi79], which aims at adding more high-level information to P-Code that allow
optimizations at the intermediate language level.

DCode A modern descendant of P-Code is DCode [Gou97b], which is the intermediate
representation used as target of various language front-ends in the Gardens Point com-
piler project [Gou97]. Among the front-end languages are Modula-2, Oberon 2, and ANSI
C. Code generators for most popular machine architectures exist, like SPARC, MIPS, and
IA32. Unlike P-Code, DCode contains no features that relate directly to a specific front-
end language, it tries to stay language neutral. Its scope are imperative, procedural pro-
gramming languages with a more or less conservative feature set.

DCode textually represents the instruction set of an abstract stack machine, the D-
Machine. It offers low level data types like word, hugeint, and float, which are manipu-
lated by instructions that operate on values on the stack. The most marking distinction to
P-Code is the low level of address expressions, for example the nonexistent load instruc-
tion is synthesized from push address and dereference instructions.

For code generation, back-ends that handle DCode parse the ASCII file and create
a control flow graph, as well as virtual assembler code. This virtual assembler closely
resembles the target architecture, but omits details that do not offer good opportunities
for optimization. Finally, register allocation is performed and assembler or object code is
written to files.

Overall, the compilers based on DCode show the practical effectiveness of a front-end,
back-end decomposition of a compiler.

MLRisc MLRisc is an optimizing back-end that is especially designed to be a good tar-
get from divers high-level, typed programming languages [GeLe]. However, it was orig-
inally developed as back-end for the Standard ML of New Jersey [SMLNJ] compiler, an
implementation of Standard ML’97 [MiToHa+97]. MLRisc wants to help language de-
signers reuse the research investments poured into a modern optimizing back-end.

The intermediate language of MLRisc is an abstract assembler with unlimited pseudo
registers, which will be mapped to real registers and memory locations transparently.
The main invention of MLRisc is its high degree of adaptability. This approach tries to

6.2 · Intermediate Representations 111

honor the fact that no intermediate language satisfies all desires of potential front-end
languages. Therefore, several aspects of the MLRisc system are specialized according to
the semantics of the source language, the target instruction set, the flow graph, and the
optimizations applied.

In order to use MLRisc as back-end in a compiler, the source language has to be trans-
lated to MLRisc instructions first. This requires specializing the intermediate language to
best fit the source language. MLRisc allows the customization of constants, pseudo-ops,
regions, annotations, even adding user defined operations. Of course, the subsequent
stages operating on this representation have to be aware of this specific information
passed to them. The tool MDGen generates most modules for code generation from a
machine description. This description specifies register organization, instruction encod-
ing, delay slot mechanism, and so on, of the target machine. Extensions are treated by
adding modules that augment the built-in pattern matching system with ML constructs.
The tight coupling with ML as implementation language is one major problem of the
MLRisc system.

C-- The motivation behind C-- [JoRaRe99] was to provide a general assembly language
that is appropriate for the task of serving as a generic back-end in programming language
research projects. This task is often performed by C, which became a kind of universal
assembler because of the wide availability of C compilers on virtually all platforms. Un-
fortunately, this approach is inadequate if the source language constructs do not map
nicely to C constructs. Furthermore, C allows no control over low-level decisions like
stack-frame layout or memory aliasing, which hinders garbage collection, exception han-
dling, and optimizations.

C-- provides abstractions for the main features of processor hardware, i.e. computa-
tion, control flow, memory, and registers. Computations work on machine types, provid-
ing an expression abstraction instead of lower level constructs. Control flow is modeled
with if and goto statements. Variables will be mapped to registers or memory, depend-
ing on the target machine’s capabilities. In general, C-- gives the client much more control
over low level decisions than C, but also provides abstractions that are not available in
raw machine assemblers.

One major research topic of the C-- project is efficiently supporting semantically dif-
ferent run-time services for various source languages. This services include garbage col-
lection, profiling, debugging, and exception handling. The difficulty of this task stems
from the fact that both front-end and back-end hold knowledge that is needed by these
services. Consider the root finding problem in accurate garbage collection. Only the
front-end knows which variables are pointers to the heap and which are atoms, whereas
the back-end knows the location of these pointers at run time. Similar problems arise in
all run-time services.

The philosophy in C-- is to separate policy from mechanism by providing hooks in
the C-- back-end that allow the implementation of efficient high-level run-time services
in the front-end. The front-end and the back-end communicate through a procedural
interface whenever the front-end requires information only available to the back-end.
The interfaces and mechanisms required for garbage collection and exception handling
are described in [JoRaRe99] and [RaJo00], respectively.

As a side note, C-- uses MLRisc as optimizing code generator.

National Compiler Infrastructure The National Compiler Infrastructure (NCI) project
is an effort to provide a high quality compiler infrastructure that is the basis for further

112 Chapter 6 · Related Work

compiler research in the industry and at universities. The major components of the NCI
are the Zephyr family of tools, and the Stanford University Intermediate Format (SUIF).

SUIF is an extensible C++ framework [KiHö97] whose class hierarchy captures an
intermediate language. This internal representation is changed by passes that are applied
to each procedure one at a time. An alternative pass model is available that allows a
chain of passes to operate on one procedure. The user can easily add his own passes by
subclassing the Pass or PipelinablePass classes. These passes can be combined either by
passing the SUIF objects in memory or by reading and writing SUIF objects to and from
files with the own persistence technology. The flexible and modular organization was
one major invention of the redesign from SUIF 1 to SUIF 2.

The SUIF 2 hierarchy supports objects for annotations, symbol tables, file sets and
scoped objects. Scoped objects are mainly statements, instructions and expressions at
various levels of abstraction. For example, do, while, and for statements are available for
a high-level representation, and several jump, load, and store instructions for low-level
representation.

By deriving from the base class, new abstractions can be introduced. Initially, SUIF
was intended for representing languages like C and Fortran, which do not differ much at
a fundamental level, and are therefore easy to map to a common intermediate language.
OSUIF, an effort to extend SUIF’s applicability to object oriented languages [DuCoIa+97],
illustrates how to extend the class hierarchy for advanced constructs6, but it also high-
lights that “program semantics cannot easily be captured with data structures alone”
([DuCoIa+97], p. 2).

A SUIF system first operates on the high-level representation, subsequently lowering
the abstraction level until machine code is generated. It is an interesting aspect of the
SUIF system that multi-level representations are supported.

The core of the Zephyr compiler infrastructure is a Very Portable Optimizer (VPO)
for high-quality code generation [ApDaRa98]. All optimization algorithms are machine
independent transformations, but are performed on machine instructions. This some-
how contradictory approach relies on code representation as register transfer lists (RTL).
The semantics of the RTLs is machine independent, but every RTL has to match a real
instruction of the current target machine. Therefore, writing a code expander that turns
the compiler’s intermediate representation into a valid RTL accepted by VPO and that
fulfills the machine invariant constitutes substantial work. A SUIF-to-VPO bridge allows
using VPO with SUIF based compiler front-ends.

Zephyr also provides tools that aid compiler writers in using the VPO. The most ma-
ture is ASDL, the Abstract Syntax Description Language [WaApKo+97]. It allows the
concise description of tree-like data structures, primarily abstract syntax trees. Idiomatic
data structures and functions reflecting the syntax description are generated with the tool
asdlGen for C, C++, Java, and ML. These data structures can be written to and read from
secondary storage in a language independent format as pickles in order to allow multi
language compiler development.

ASDL plays a role comparable to XML Schemas7, as these also allow the description
of specialized tree structures. This is exactly what we did for XGILF. The advantage of
XML is that is an established standard and a large amount of tools and APIs are available
now, whereas ASDL is more tailored towards the special needs in compiler construction.
In [Han99], Hanson mentions that the ASDL toolset was extended to create pickles in

6The extension allows dispatch based on one receiver and is part of the SUIF release since version 2.2.
7We consider XML DTDs as one XML Schema variant.

6.2 · Intermediate Representations 113

XML, which suggests a merging of the related technologies.

MCode Clarity MCode [LeDeGo95] is an intermediate representation developed by
Sun at approximately the same time as Java Bytecode, but with different intentions. Clar-
ity is a dialect of C++ with simplified semantics that supports systems and distributed
programming especially well. MCode is the intermediate representation generated by
the Clarity compiler. It is either interpreted or compiled into machine code at run time,
using a simple counting policy for activation of the compiler. For interoperability with
legacy C libraries, MCode is wrapped in standard object files that can be processed with
standard system tools.

The MCode core is a stack machine with RISC-like instructions. The abstraction level
of control flow instructions is at the same level as GILF instructions, constructs for proce-
dure calls and loops exist. The motivation for this design decision was to allow the best
possible code generation for the constructs on the actual target machine. Data manipu-
lation is performed by typical stack machine instructions that work on the stack. Data
types include native machine types, structs, unions, interfaces and implementations.

The implementation of the Clarity compiler is sketched briefly in [LeDeGo95], it is
based on an object oriented design. A new code generator can be added by overloading
two base classes, CGMachine and CGValue, respectively.

The Clarity project seems to have been abandoned by Sun due to the success of the
Java programming language.

ANDF/TDF The ANDF project started 1989 as a request for technology by the Open Soft-
ware Foundation with the intent to establish an architecture neutral distribution format
(ANDF) [Mac93]. The technology chosen from the list of candidates was the TenDRA
distribution format (TDF) [Cur95], developed at the United Kingdom’s Defense Evalua-
tion and Research Agency (DERA). TDF is the intermediate language used in compilers
based on TenDRA technology.

TenDRA splits the compilation into two parts, production and installation. The pro-
ducer translates the source language into portable TDF, which will be translated into
target specific code on the deployment machine by the installer. Producers for C, C++,
Ada95 [Bun95], and Java [FaFeRo97] are available, either publicly or commercially.

Unlike the representations discussed before, TDF is not an abstraction of processor
hardware, but rather a tree-structured intermediate language that contains abstractions
for common constructs found in imperative programming languages like C, Pascal, and
Ada. In this respect, it is very similar to GILF. The most important TDF constructs are
EXPs, which represent statements and expressions, TAGs, which abstract identifiers for
variables and labels, and SHAPEs, which abstract data structures. SHAPEs are basic
machine types, but recursive definitions are possible with arrays and compounds.

Despite OSF’s request for a distribution format, the main emphasis of TDF is on porta-
bility. The approach taken by TenDRA is checking source code against target indepen-
dent application interfaces (APIs). These APIs are specified with TDF’s token declara-
tions. The public TenDRA release contains target independent APIs for POSIX, the ANSI
C library, Motif 1.2, and other system libraries. The checked source text is then trans-
lated into target independent TDF by the appropriate producer, into so-called capsules,
a linearized binary encoding of TDF. These capsules are linked against target dependent
capsules that contain the token definitions, which replace the unresolved tokens. In a
final step, the capsule resulting from the TDF linking process is translated by an installer
to target machine code and linked with system libraries, producing an executable for the

114 Chapter 6 · Related Work

deployment machine. Programming in a TenDRA compilation environment is all about
programming against explicit APIs.

The token construct is the means of parameterization in TDF. Every token has to be
replaced by its token definition such that the installer can produce machine code. Tokens
can be used almost everywhere in TDF, not only as placeholder in API specifications.
Notice that porting a TDF system to a new system involves augmenting all tokens used
in the producer by platform specific token definitions that implement these tokens.

An interesting case study is the C++ producer, which is part of the public TenDRA
release. It shows how genericity can be handled in a TDF based compilation system. All
nongeneric parts of a C++ program are translated directly to TDF by the C++ producer
and can be compiled into system object files by installers. But what happens with class
and function templates? TDF capsules contain only instantiated templates. At the time
the capsule for the main program is generated, the C++ producer holds the list of all in-
stances in a global variable, avoiding reinstantiations. On the other hand, this means that
the C++ producer must have access to template code in source form. The C++ producer’s
documentation describes the idea of dumping the producer’s internal representation and
using this for linking of C++ template libraries. This comes very close to our concept, but
of course is specific to C++ and does defeat the purpose of TDF as distribution format.
Furthermore, it is not implemented and work on the C++ producer seems to have stopped
since 1998.

SDE/Slim Binaries Slim Binaries [KiFr99] [FrKi96] are an intermediate representation
that is based on abstract syntax trees, consequently closely related to GILF and TDF. The
technology was introduced by Michael Franz as semantic dictionary encoding (SDE) in
his dissertation [Fra94].

At its core, a Slim Binary consists of a parse tree that describes the source program’s
operations and a symbol table which contains extensive type information about these op-
erations. Slim Binaries are translated into machine code at load time. In order to recoup
the time penalty incurred by code generation at load time, the representation exploits
source code characteristics to achieve a very compact binary encoding. For example,
common expressions that occur multiple times in the same scope are encoded efficiently
with a predictive algorithm. From its initial application in the Oberon-3 system, the au-
thors have extended the applicability of SDE/Slim Binaries to portable code because the
compact encoding reduces network bandwidth.

What sets Slim Binaries apart from the TDF technology is that it features a dynamic
compilation process at load time instead of the more traditional approach taken in Ten-
DRA systems that require a static, off-line linking process. The structure of a the SDE
compilation system has directly influenced the GILF system, as can be witnessed in chap-
ter 3. Furthermore, the authors claim that Slim Binaries offer a more dense encoding as
well a faster decoding process, compared to TDF capsules and installers. They back this
statement with extensive figures. The Oberon-3 distribution for three platforms was re-
duced from three packages around 2.5MB of data to just one platform independent Slim
Binary package of 0.8MB of data.

Java Bytecode The Java programming language [GoJoSt+00] owes much of its suc-
cess to its innovative run-time environment and execution model. Java source programs
are compiled into Java Bytecode, which is executed by an implementation of the Java
Virtual Machine (JVM) [LiYe99]. In its simplest form, and also least efficient one, a JVM
interprets the bytecode representation. More recently, just-in-time (JIT) compilers have

6.2 · Intermediate Representations 115

become standard components in contemporary JVM implementations. These JIT com-
pilers selectively translate methods into native machine code, which no longer require
interpretation [GrMi00].

The JVM is a stack machine with an instruction set that was designed to facilitate
compilation of Java source code into Java Bytecode. The supported data types directly
reflect Java’s data types: primitive types and reference types. Primitive types are typ-
ical integral and floating point machine types, whereas reference types are pointers to
class instances and arrays. Instructions operating on JVM types implicitly include the
operands’ type in the instruction, for example iload loads a local variable of type int
onto the stack. Because the JVM was designed to represent Java, it directly supports the
Java object model with single implementation and multiple interface inheritance, and
includes method invocation instructions which match Java’s dispatch semantics.

Class files are used to transport portable Java Bytecode that can be run on any plat-
form that has a conforming JVM implementation. Additional to the pure instructions,
class files contain symbolic information about the class behavior and interface, stored in
the constant pool. This type information is needed by the JVM, because it has to perform
type checks at load time and even at run time after dynamic class loading, one of its most
powerful features. The type checks are necessary to enforce Java’s rigid security model
that renders some common run-time errors impossible. The security mode is essential
for the JVM as it propagates remote execution of mobile, sometimes untrusted code.

The success of Java makes JVMs an ubiquitous software tool on most platforms. This
makes Java Bytecode an attractive target for front-ends of languages other than Java,
despite the fact that it was not designed for this purpose. At [Tol02], about 160 systems
are listed that use the JVM as back-end, including logic, functional, and object oriented
programming languages. Nevertheless, the problems of systems taking this road have
also been noticed by others [Gou00] [GoCo00] [PeMe01], the most severe ones are the
limited methods for parameter passing in the JVM, gaining access to nonlocal variables,
and representing function pointers. The lack of tail recursive function calls especially
hinders translation of functional languages to the JVM. Moreover, mapping type unsafe
features to the JVM is virtually impossible, as the security model is built on top of the
strong type system.

CIL Recently, Microsoft also changed the basis of its development platform fundamen-
tally. The common language infrastructure (CLI) provides the techniques and specifi-
cations to run managed code, represented in the common intermediate language (CIL)
[ECMA01]. It has much in common with the JVM, but also differs in significant design
choices. Just like in Java Bytecode, a high-level type system, the common type system
(CTS), is central part of the CIL. But in contrast to Java Bytecode, it was designed from
the start to support multiple languages equally well. This reflects in the richer set of types
in the CTS. It offers primitive types and reference types, but also various pointer types
and compound value types. Value types resemble structs in C, and they can be allocated
by the virtual execution system (VES) statically, they are not put on the garbage collected
heap like all reference types. CIL contains instructions to box and unbox value types for
efficient interaction with reference types.

The VES follows the abstract stack machine design, which obviously influences the
CIL instruction set. Unlike Java Bytecode, instructions normally do not encode the types
on which they operate, the VES has to infer these types from the declarations of stack pa-
rameters and local variables. For example, the instruction add adds the topmost locations
on the stack without overflow check. All arithmetic operations in the CIL are available

116 Chapter 6 · Related Work

with and without overflow check that throws an exception, the corresponding instruction
to add is add.ovf. The instructions for method dispatching are also more flexible than in
Java Bytecode, a nonvirtual method dispatch is available. Virtual dispatch is built-in for
single implementation and multiple interface inheritance. To satisfy the needs of func-
tional programming languages that feature recursion as only means of iteration, the call
instruction can be marked as a tail call, thus discarding it caller’s stack frame. Further-
more, parameter passing by reference for primitive types is supported, whose omission
in Java Bytecode is a performance bottleneck in some back-ends targeting it.

The VES differentiates between managed and unmanaged code, the former one is
verifiable by the CLI. Managed code is restricted to use features of the instruction set
that are completely typesafe. For example, using arithmetic operations on pointers is not
allowed in managed code. The verifier guarantees practically the same safety level as the
Java Bytecode verifier, performing part of the verification at load time, and relying on
run-time checks for some advanced checks, like array bounds checking.

One deliberate design decision of the CIL was not to endorse interpretation. Instead,
CIL code is compiled into native code at load time on the deployment machine. This
makes Microsoft’s compilation strategy very similar to the one chosen both by SDE/Slim
Binaries and GILF. Assemblies serve as the component format in CLI. They may contain
several class descriptions and their code, top-level methods, and meta-data like version-
ing information or digital signatures, but also user provided meta information.

Generally, CIL is an interesting intermediate representation for front-ends from mul-
tiple source languages. A detailed comparison between CIL and Java Bytecode can be
found in [Gou01], using it as back-end of a functional programming language is dis-
cussed in [PeMe01].

6.2.2 Generic Intermediate Representations

All the mentioned intermediate representations have one thing in common. They do
not take requirements of genericity into account. We will now examine projects that
where motivated by alleviating this shortcoming. First, extensions to both Java Bytecode
and CIL are examined, followed by an intermediate language that supported parametric
polymorphism from the beginning.

Translating Generic Java Dialects to Java Bytecode Java’s lack of parametric poly-
morphism has been perceived as a major drawback from its very first days in 1996,
when Java became available. This shows in the numerous literature that treats extending
Java with this missing feature. Generally, genericity in Java is realized as parameter-
ized classes and interfaces, and parameterized methods. The first proposals were Pizza
[OdWa97], PolyJ [MyBaLi97], and [AgFrMi97]. In this section, these publications are
scrutinized in regard to the compilation process.

Odersky and Wadler [OdWa97] established the terminology for work on generics in
Java. They identified two major strategies for translating parametric polymorphism in
Java, either a homogeneous or a heterogeneous translation. A heterogeneous translation
creates specialized code for every instance of a generic construct, whereas a homoge-
neous translation creates one translation of the generic code that is used by all instanti-
ations, relying on the generic idiom. The generic idiom is used to implement collection
libraries in current Java without support for parametric polymorphism. It exploits the

6.2 · Intermediate Representations 117

fact that all classes inherit from the common base class Object8. Collections store refer-
ences of type Object, enabling them to hold any Java class type. Client code is required to
explicitly downcast these objects to the actual stored type in order to access their specific
properties. Notice that these downcasts also have to be present in code generated by a
generic Java compiler, because otherwise the Java Bytecode verifier would reject the code
as type unsafe.

Another important dimension in evaluating generic extensions to Java is the compat-
ibility of generated code to old virtual machines. It is desirable that bytecode created by
a generic compiler is executable on unchanged JVMs, this means legal nongeneric Java
Bytecode is created that can be processed by an unchanged class loader. Furthermore, an
interaction with old collection classes would ease the upgrading process to the new lan-
guage. The backwards compatibility of generic proposals heavily influenced most work
in this area.

The advantages of a homogeneous translation lie in its space economy, because one
code is shared by all instantiations. Also, no run-time overhead is introduced except for
the type casts required by the bytecode verifier. For realistic software projects, the over-
head in run time introduced by type casts is around 3-5%, but synthetic benchmark lead
to figures up to 20% [MyBaLi97]. Pizza, and a newer, simplified version called Generic
Java (GJ) [BrOdSt+98], both employ the homogeneous translation strategy. Special care
was taken in GJ to make parameterized and unparameterized collection classes interop-
erate at the bytecode level without modifications to the JVM. Recently, GJ was proposed
as extension to the Java language [BrCoKe+01] and will presumably become part of Java
in version 1.5.

The obvious drawbacks of the homogeneous approach are performance issues. Prim-
itive types can be supported only as boxed values, e.g. int as Integer, and type casts
have to be inserted although static type checking has proven them needless. Therefore,
several heterogeneous implementations for parametric polymorphism were proposed
[AgFrMi97] [MyBaLi97] [EvKeMe+97] [BoDa98].

The work by Agesen et al. was the first to propose instantiation at load time, which re-
quired a revised class loader and extended Java Bytecode. The extensions are prepended
to a standard class file. They are made up of an identification number, a counter for type
parameters and constraints, followed by the constraints themselves. In the following
bytecode, references to the type parameters introduced in the extension section appear,
which will be replaced by the loader.

PolyJ requires an extended bytecode, also. First, information about type parameters
and where clauses are added to class descriptions, and signatures allow the specification
of instantiations. Second, two new instructions are introduced, invokewhere and in-
vokestaticwhere, which call operations on parameter types, either with virtual or static
dispatch.

Security problems occur due to the lost type information through type erasure, first
mentioned in [AgFrMi97]. The problem of discarding type information leads to more
severe restrictions imposed by the systems based on homogeneous translations, as for-
malized in [SoAl98]. At the language level, operations that require exact type information
are not available for operations involving actual type parameters. These are type casts,
object allocation and instance tests. For example, the statement InIt it = new InIt();
is not valid in GJ, if InIt is a type variable. The lack of exact type information also
impedes the application of reflective and persistent Java mechanisms in generic code.

8Newer implementations us a technique called type erasure [BrOdSt+98] that replaces a type parameter
with its bound, which is not necessarily the least specific Object type.

118 Chapter 6 · Related Work

Recent work about generic facilities in Java concentrated on overcoming these problems
while retaining a partial homogeneous translation.

One approach is NextGen [CaSt98], a superset of GJ. It supports full type information
at run time by creating wrapper classes for each instantiation, which inherit most of their
behavior from a type erased base class. The NextGen implementation can be regarded
as a hybrid approach, using a homogeneous translation for the base class, and using
a heterogeneous translation for the wrapper classes and interfaces that carry the type
information at run time. The wrapper classes are augmented with code snippets that
implement the type dependent operations that are not possible in a pure homogeneous
code base.

The second effort is by Mirko Viroli. He elaborated on the idea by Solorzano and
Alagić [SoAl98] of using Java’s reflection facilities to make exact type information about
instantiations and the involved types available at run time, and to implement type depen-
dent operations in terms of these data. Viroli presents an implementation that computes
type descriptors of instantiations at load time and stores references to these descriptors in
each parametric object [ViNa00], thus avoiding much of the run time impact associated
with a reflective solution to parametric polymorphism. Benchmarks show that it per-
forms better than NextGen regarding load time and space efficiency, but adds a run time
penalty. In a following paper, he demonstrates how to extend this technique to virtual
parametric methods [Vir01]. An interesting insight found in his work is the condition un-
der which eager recursive generation of parametric types leads to nontermination of the
instantiation process [Vir00]. This can be avoided by lazy instantiation, which can also
improve performance, as only run time data structures for actually used instantiations
are created [Vir02].

Generic CIL Although the specification of CIL and tools to generate CIL have been
made available for its first generation only recently, a proposal that handles paramet-
ric polymorphism at the intermediate language level already exists [KeSy01], which one
more time shows the significance of genericity. The aim of Kennedy and Syme’s work is
to enrich the common type system present in CIL with constructs that support paramet-
ric polymorphism in order to supply a convenient target for various high-level languages
with this language feature. More advanced constructs, like type classes and higher-order
types in Haskell and Mercury, or the full C++ template mechanism, are not directly pro-
vided, but the most expressive Java proposals can be mapped easily to generic CIL. It
features exact run-time types, instantiations for value and reference types without box-
ing, bounded polymorphism, parameterized classes, structs, interfaces and methods, as
well as polymorphic inheritance and recursion. The extensions to CIL can be grouped in
the following three categories:

1. New polymorphic forms of class, interface, struct, and method declarations.

2. Added instantiated types and type variables to the common type system.

3. New instructions, and generalized forms of the current ones.

Like our approach, generic CIL leverages the advantages of load time instantiation
to generate code for different instantiations on demand. An interesting characteristic of
their implementation is the hybrid approach to code specialization and code sharing. In
general, they apply a heterogeneous code generation approach, but to avoid code bloat,
instantiations that yield exactly the same machine code are shared. This gives rise to the

6.2 · Intermediate Representations 119

same problems encountered by homogeneous Java generics translations, namely to sup-
ply exact type information at run time, which is necessary for serialization and reflection
mechanisms. For class types this is solved by storing type information in the virtual table,
which is specialized for every instantiation. Virtual tables that are used as type identifiers
are called type handles. Dictionaries of type handles are created during program execution
which contain entries for all actually used instantiated types. For parametric methods,
the relevant dictionary is passed as extra parameter in order to have access to exact type
information.

TAL/TALx86 At Cornell University, a statically typed assembly language (TAL) was de-
veloped, first used as target from a call-by-value variant of System F, the polymorphic
λ-calculus [MoWaCr+98]. The motivation for this project was to preserve type informa-
tion in all stages of the compilation process. This information guides several analyses and
transformations like closure conversion and unboxing. The typed TAL programs can be
checked for various type errors, thus draining notorious error sources, very similar to
Java Bytecode and CIL verifiers. This enables TAL to participate in systems that require
security guarantees from code running under their control, like plug-ins for applications
or operating systems.

TAL has a RISC-like instruction set, augmented with a rich type system that sup-
ports parametric polymorphism, tuples and more. This means, it is possible to manip-
ulate generic data types in TAL. On the other hand, TAL instructions in code segments
work on fully instantiated types, only. Parametric polymorphism is translated using a
boxed type erasure interpretation, common to most compilation systems for functional
programming languages.

TAL, intended as a formalism for a low-level, statically typed assembler language,
was further improved to a realistic assembly language called TALx86 [MoCrGl+99], based
on Intel’s IA32 architecture. In TALx86, the focus of the project shifted to providing a
preferable alternative to Java Bytecode as target from high-level programming languages.
To this end, the already rich type system in TAL was enhanced even more, now support-
ing higher-order and recursive type-constructors and arbitrary data representation. The
relation to the IA32 architecture is very close, it even allows TALx86 programs to be
assembled and linked with Microsoft’s macro assembler, MASM. Before assembling the
code, all instructions will be checked for type safe access of data. Type annotations enrich
TALx86 code to enforce its type system on top of the IA32 instructions.

In an additional paper [GlMo99], a linking calculus is presented based on the TALx86
assembler. It handles dynamic linking and loading, and cyclic dependencies of modules,
properties commonly needed in modern operating systems.

6.2.3 Discussion

This section has shown the wide variety of intermediate languages used for compiler
construction. It clearly underpins the statement that one representation does not fit all
needs. The focus of our work was translating generic code, which is written at a very high
level of abstraction. In order to retain the source level semantics as much as possible, GILF
contains constructs that are very close to imperative programming languages. This is on
the one hand motivated by technical problems9, but mainly by the fact that high-level
optimizations like algorithm selection require high-level semantic information.

9The inability to generate machine code for generic data structures and algorithms with nonuniform
representation was discussed at length in chapter 2.

120 Chapter 6 · Related Work

Therefore, the particular mélange of nongeneric constructs available in GILF is of
course influenced by the representations closer to source languages, like ANDF and
SDE/Slim Binaries. The built-in algorithms and data types of the GILF core library were
in part derived from the instruction sets of CIL, the Java Virtual Machine and prominent
contemporary processor architectures. But these are the conservative aspects of GILF
only, they do not deal with our main problem, namely creating instantiations of generic
constructs.

The advantages of load-time instantiation in GILF are shared by some generic Java
proposals and generic CIL, thus the structure of their compilation systems adhere to the
same philosophy as GILF’s system. However, these solutions all enforce instantiation
semantics fixed by a high-level type system, either the Java type system or the Com-
mon Type System. GILF tries to be a viable target for source languages with varying
instantiation semantics and type systems. This is achieved by explicitly storing binding
information in the intermediate representation. It is now possible to split the instantia-
tion process into two phases. Instantiation analysis, which is source language dependent,
stores its results in GILF’s binding elements, and instantiation application simply collects
the bindings and instantiates generic constructs according to these information. Further-
more, explicit binding information naturally provide the basis for algorithm selection,
because a function symbol can be bound to multiple algorithms at the intermediate level,
according to source language rules. Exact type information are mandatory for serializa-
tion and reflection, and therefore are available in advanced Java proposals and generic
CIL. They also promote algorithm selection in GILF. Based on the requested algorithm
instantiation, the selection unit tries to choose the fittest candidate among the available
ones10.

Code sharing between instantiations, an interesting aspect of the generic CIL sys-
tem, is currently not supported by GILF. This is strongly motivated by the fact that this
technique introduces problems when type information is required. Specialization of all
instantiations does not share these drawbacks, but may lead to code bloat.

A positive aspect is the coincidence of the development in building compilation sys-
tems around virtual machines and intermediate representation, and our approach to this
problem, because they share many characteristics. Thus, further work can concentrate
on integrating ideas unique to GILF into these systems and otherwise exploit work alreay
invested into their other components.

Recapitulating, GILF offers an versatile intermediate representation for targeting by
various generic source languages and directly stimulates experimenting with different
instantiation semantics. This is adequate for research in genericity, which is still evolving
at a rapid pace.

10Of course, algorithm selection can be determined also by factors other than instantiation type arguments.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The strong acceptance of the Standard Template Library and its inclusion into the Inter-
national C++ Standard, as well as the emergence of other generic libraries, not only in
C++, has proven that genericity is an important and useful language paradigm. The rea-
son for the success of generic programming is the fact that it achieves a stellar goal of
software engineering: code reuse, and this without sacrificing efficiency. What is also re-
markable is the strong interest of research in the field of genericity in stating and checking
the requirements for valid instantiations of generic components.

In this thesis we proposed a solution to the problem that plague current generic
programming languages with support for heterogeneous data and code representation.
These languages require generic libraries to be distributed as source code. The solution
is based on the idea that a compiler for a generic language should be separated into two
mostly independent parts, the compiler front-end and the back-end. The front-end is re-
sponsible for checking the requirements and constraints of generic components during
instantiation analysis, as well as performing overload resolution and other high-level se-
mantic operations. All the decisions of the front-end are propagated to the back-end in an
intermediate language by making bindings of the instantiation parameters explicit. The
back-end will generated nongeneric instances of algorithms and data structures during
instantiation application based on the information present in GILF’s binding section. This
way, GILF can act as target of generic languages with varying semantics.

7.2 Future Work

The SUCHTHAT project, the context in which our work evolved, was initiated to create a
generic programming language and environment for implementing a generic library of
computer algebra algorithms called WLOG. Once the SUCHTHAT environment is com-
pleted with GILF as its back-end, and extensive tests with the library can be performed,
fine tuning the constructs present in GILF will start.

However, the GILF system is intended as a conceptual frame for further research in
compiler construction and run-time systems related to generic programming languages.
The diversity of these fields made it virtually impossible to deal with all aspects of such
software tools in an adequate manner, thus providing incentive for deeper investigations
in many areas. We want to list those that seem to offer the most interesting perspectives.

122 Chapter 7 · Conclusions and Future Work

• The interface to algorithm selection in GILF is a novel feature in intermediate rep-
resentations. Efficiently integrating an algorithm selection unit with run-time in-
stantiation is a major undertaking. The same holds true for strategies that guide
algorithm selection. Load-time instantiation can rely on instantiation arguments
and the calling context to determine a fittest algorithm, optionally augmented by
profiling data gathered in previous runs. Run-time instantiation can even access
actual values at algorithm calls, but has to meet more stringent constraints in order
to avoid increased run-time due to the overhead introduced by algorithm selection.

• The separation of compiler front-end and back-end by means of an intermediate
language has become quite popular in recent years, the most prominent examples
are Java Bytecode and Microsoft’s Common Intermediate Language (CIL). It would
be interesting to exploit the progress made in just-in-time [GrMi00] and dynamic
compilation techniques [PoHsEn+99] [Eng96] [Kis99] [PhChEg02] [GrMoPh+00],
and integrate our ideas for instantiation management into the virtual machines. For
both mentioned intermediate languages exist open source implementations which
provide an excellent platform for experimentation.

• GILF in its current form lacks some features that would be desirable but were omit-
ted due to design and time constraints. It supports algorithms and record types,
but does not have an integrated object model. This could be an interesting addition
to GILF, but devising a flexible object model that supports all major techniques of
static and dynamic method dispatch in a language neutral way is far from trivial.
Another issue are exceptions, however their integration seems to pose less substan-
tial problems. Work in this area has shown that most concerns do not interfere with
genericity.

• Nowadays intermediate languages are considered for mobile computing and dis-
tributed applications. In this context security becomes a major concern in interme-
diate language design. Signature based approaches for authorization and enforcing
security are necessary, and the XML Signature Working Group is making progress
in this direction. Their work is an attractive candidate for inclusion in XGILF.

There is one final aspect that deserves further work. Although GILF enables one to
distribute a generic library without making its defining parts available in source code, a
front-end still has to access the declarations of the generic components in the library for
checking the validity of instantiations. These declarations can be either integrated into
GILF files or be made available externally. The content of these information is of course
highly front-end language dependent, and therefore a case by case decision seems neces-
sary. Otherwise, it would be a great achievement if GILF could be extended with a flexi-
ble mechanism that eases the provision of declarations, containing concept requirements
and algorithmic constraints. This mechanism will then act like precompiled headers for
generic concepts.

Appendix A

The Utility Library

In chapter 5 we discussed the GILF system prototype and its implementation. Here, we
will present the auxiliary library libutility that contains additional facilities used by the
prototype implementation. Code in libutility is not directly related to GILF system’s
application logic and is therefore factored out into a self-contained library.

A.1 Representing Nodes with Properties

GILF is a tree data structure at its core. XGILF, its XML based external representation,
makes this visually apparent when displayed in an XML editor or browser. All nodes can
be expanded and collapsed, allowing for a comfortable examination of the intermediate
code. Thus, we need data structures for holding an internal representation of GILF trees
during the system’s runtime.

We have split the relevant data structures in two parts. The utility library holds gen-
eral classes that enable us to store tree-like data, whereas the GILF library contains exten-
sions of these classes specialized for GILF’s specific application behavior. The approach
is a variation of the scheme presented in [SiWe99].

A.1.1 Nodes

Storing nodes and child nodes is achieved with two class templates. Class Node holds the
information present in every node, which is of type DataType, its first template parameter.
DataType has to meet no requirements. This gives us the flexibility to store arbitrary
data in a node. Notice that data, the member used to represent information in the node,
is public and therefore can be read and modified freely. This is motivated by the fact
that Node’s sole purpose is accessing this member, and this should be as convenient as
possible. Any kind of encapsulation is delegated to type DataType.

〈Listing A.1: Class Template Node〉 ≡
template <typename DataType, class CoreType = Node_Core<> >
class Node : public CoreType
{

public: // Types.
typedef DataType data_type;
typedef CoreType core_type;

public: // Members.
data_type data; // The data/information stored inside the node.

124 Appendix A · The Utility Library

}; // class Node
Code extracted from file utility/Node.hpp, lines 97 to 108.

Node has a second template parameter called NodeCore, from which it inherits publicly.
NodeCore is a concept that specifies all aspects that deal with handling child nodes. We
examine the requirements on models of NodeCore by looking at the default implementa-
tion Node Core. It has two template parameters, both are template template parameters.
The first one must be bound to a model of a STL conformant sequence container. It
defaults to deque from the C++ Standard Library. Child nodes will be stored inside a con-
tainer of this type, which manifests in the private member m children. For a discussion
of the second template parameter, see [SiWe99].

〈Listing A.2: Class Template Node Core〉 ≡
template <template <typename, class> class SequenceType = std::deque,

template <typename> class AllocatorType = std::allocator>
class Node_Core
{

public: // Types.
<see Listing A.3 on page 124>

public: // Methods.
<see Listing A.4 on page 124>

private: // Members.
// The sequence of child nodes.
sequence_type m_children;

}; // class Node_Core
Code extracted from file utility/Node.hpp, lines 46 to 86.

The two public sections of Node Core represent the requirements on models of the concept
NodeCore. We begin with the public type definitions that have to be present. The first
one specifies the node type stored inside the private member mentioned above. In our
implementation, we use shared pointers from the Boost library to hold nodes. This has
two reason. Pointers allow nodes to act polymorphically, and shared pointers take care
of the nodes’ memory management. The second type definition, sequence type, exports
the type of the used sequence container. Finally, size type exports the sequence’s type
used to declare its size.

〈Listing A.3: Class Template Node Core〉 ≡
// The shared pointer type.
typedef boost::shared_ptr<Node_Core> node_type;
// The child nodes sequence type.
typedef SequenceType<node_type, AllocatorType<node_type> > sequence_type;
// The corresponding size_type.
typedef typename sequence_type::size_type size_type;

Code extracted from file utility/Node.hpp, lines 53 to 58, referenced in listing A.2.

The second public section enumerates the required methods. Method child count re-
turns the number of child nodes, child at returns the requested child node by position,
and push back appends a node at the end of the child node sequence. In general, these
methods simply act as forwarding calls to methods that are part of the sequence con-
tainer’s interface. It should be noted that this is a minimal set of methods, but they were
sufficient to implement our prototype without great inconveniences.

〈Listing A.4: Class Template Node Core〉 ≡
// Return the number of child nodes.

A.1 · Representing Nodes with Properties 125

size_type child_count() const
{
return m_children.size();

}

// Return child node at position n.
node_type child_at(size_type n) const
{
return m_children.at(n);

}

// Push node on the back of the child sequence.
void push_back(const node_type& node)
{
m_children.push_back(node);

}
Code extracted from file utility/Node.hpp, lines 63 to 79, referenced in listing A.2.

A.1.2 Properties

Now that we have a generic representation of nodes and child nodes, the last issue to
resolve is finding a general, yet safe way of storing information in Node’s public member
data (see listing A.1). The requirements on such a class are:

• Access to single properties is type safe, i.e. line numbers should be stored as inte-
gers, file names as strings, and so on.

• Related properties can be grouped together, e.g. information relevant for debug-
ging.

• Groups of properties can themselves be combined to completely describe the data
stored inside a node.

Our solution to this problems takes advantage of Boost’s tuple library, Loki’s Tu-
ple class and typelist facility, and template metaprogramming. It consists of two class
templates. Class Indexed Property is a small wrapper around tuple. Tuples in C++ are
heterogeneous, fixed-size containers that store elements that can be accessed by index
[Jär01]. The wrapper has two template parameters, IndexType and TupleType. The latter
one is the tuple that stores the property’s elements. IndexType is an enumeration that
introduces a named index for every property.

〈Listing A.5: Class Template Indexed Property〉 ≡
template <typename IndexType, class TupleType>
class Indexed_Property

Code extracted from file utility/Indexed_Properties.hpp, lines 51 to 52.

The member m property tuple holds the properties stored inside object instances of class
Indexed Property.

〈Listing A.6: Indexed Property: Members〉 ≡
private: // Members.

TupleType m_property_tuple; // Tuple that stores the properties.
Code extracted from file utility/Indexed_Properties.hpp, lines 112 to 113.

The at() methods return references to indexed properties. They either return a const or a
non-const reference to the element, depending on the type of access. Notice the template

126 Appendix A · The Utility Library

keyword in the function call to get(), which is needed if a member template is called that
belongs to a template parameter. The traits class access traits is part of tuple’s public
interface.

〈Listing A.7: Indexed Property: Access Methods〉 ≡
// Return const reference to element at position i.
template <IndexType i>
typename access_traits<typename element<i, TupleType>::type>::const_type
at() const
{
return m_property_tuple.template get<i>();

}

// Return non-const reference to element at position i for modifying access.
template <IndexType i>
typename access_traits<typename element<i, TupleType>::type>::non_const_type
at()
{
return m_property_tuple.template get<i>();

}
Code extracted from file utility/Indexed_Properties.hpp, lines 72 to 86.

At this point, we have fulfilled the first two requirements for the properties representa-
tion, mostly relying on functionality already provided by Boost’s tuple class. The real
work is making indexed property instances recombineable, but keeping access to ele-
ments of different property groups transparent to the user. This is achieved with class
Indexed Properties, the idea is as follows. Indexed Properties takes n ≥ 1 template
parameters, each representing one group of related properties, thus these parameters are
all instances of Indexed Property. Accessing a property looks exactly the same as for a
simple indexed property, method at() is called with an enumeration constant. However,
this time the process of getting the reference to the property element involves two steps.
First, the enumeration constant’s type selects the Indexed Property that contains the de-
sired property, and thereafter the constant’s value selects the tuple’s element that holds
the typed property (see figure A.1).

The class template declaration reveals one drawback of indexed properties, the num-
ber of index property template parameters is fixed1. Currently, ten property groups are
supported. All template parameters, except the first property type, default to an empty
property type from sub-namespace detail. This will be exploited to store only provided
property types.

〈Listing A.8: Class Template Indexed Properties〉 ≡
template <class PropertyType0,

class PropertyType1 = detail::Empty_Property1,
class PropertyType2 = detail::Empty_Property2,
class PropertyType3 = detail::Empty_Property3,
class PropertyType4 = detail::Empty_Property4,
class PropertyType5 = detail::Empty_Property5,
class PropertyType6 = detail::Empty_Property6,
class PropertyType7 = detail::Empty_Property7,
class PropertyType8 = detail::Empty_Property8,
class PropertyType9 = detail::Empty_Property9>

class Indexed_Properties
Code extracted from file utility/Indexed_Properties.hpp, lines 164 to 174.

1This restriction may be removed if the Boost Metaprogramming Library becomes part of the official
Boost Library

A.1 · Representing Nodes with Properties 127

The index type and the tuple type of every property type parameter is exported with a
type definition. We only display the first one.

〈Listing A.9: Indexed Properties: Types〉 ≡
typedef typename PropertyType0::index_type index_type0;
typedef typename PropertyType0::tuple_type tuple_type0;

Code extracted from file utility/Indexed_Properties.hpp, lines 180 to 181.

Now we start with the template metaprogramming. First, all tuple types are put into
typelist all tuple types. From this list, we remove all types that are empty types, which
is the type used in default properties. This way, we compute the typelist used tuple types
that contains only used tuple types.

〈Listing A.10: Indexed Properties: Typelists (Tuple Types)〉 ≡
// First, we put all the tuple types into a type list.
typedef TYPELIST_10(tuple_type0, tuple_type1, tuple_type2, tuple_type3,

tuple_type4, tuple_type5, tuple_type6, tuple_type7,
tuple_type8, tuple_type9)

all_tuple_types;

// Now we create a new type list without all empty tuple types. This
// way we know how many property types are actually used. The length of the
// type list containing no empty tuple types denotes this number.
typedef typename Loki::TL::EraseAll<
all_tuple_types, boost::tuples::tuple<Loki::EmptyType>

>::Result used_tuple_types;
Code extracted from file utility/Indexed_Properties.hpp, lines 213 to 224.

The length of the computed typelist is used to generate another typelist which contains
only used property types. This is achieved with an extension to Loki, the typelist meta-
function FirstN, see section A.4.

〈Listing A.11: Indexed Properties: Typelists (Property Types)〉 ≡
// Second, we put all the property types into a type list.
typedef TYPELIST_10(PropertyType0, PropertyType1, PropertyType2, PropertyType3,

PropertyType4, PropertyType5, PropertyType6, PropertyType7,
PropertyType8, PropertyType9)

all_property_types;

// With the information gathered in the first step, we create a type list
// containing only the used property types.
typedef typename Loki::TL::FirstN<
all_property_types, Loki::TL::Length<used_tuple_types>::value

>::Result used_property_types;
Code extracted from file utility/Indexed_Properties.hpp, lines 228 to 238.

The tuple that holds the indexed property instances takes this typelist as type param-
eter for its constructor. We have to use Loki’s Tuple class, because tuple from Boost
currently does not support constructing a tuple from a typelist. Template metaprogram-
ming helped to trim down the tuple’s memory requirements only to the indexed property
types actually present.

〈Listing A.12: Indexed Properties: Member〉 ≡
private: // Members.

// Member that holds the properties, created by template generator.
// Remark: Tuple uses the GenScatterHierarchy class template.
Loki::Tuple<used_property_types> m_properties;

Code extracted from file utility/Indexed_Properties.hpp, lines 450 to 453.

128 Appendix A · The Utility Library

What is left to show is how transparent access to elements of the just declared mem-
ber m properties is implemented in method at(). As already mentioned, two aspects
of template parameter i are exploited. Its type is responsible for selecting the correct
specialization of the member template, in the shown example the one that is special-
ized for index type0. Therefore all Loki typelist operations can operate at position 0.
This happens two times, first to access the tuple type that contains the return type of
member template at(), and also to access the correct index property element in member
m properties. The template parameter value is then used to access the correct return type
or field, respectively.

〈Listing A.13: Indexed Properties: Access〉 ≡
template <index_type0 i>
typename access_traits<typename element<
i, typename Loki::TL::TypeAt<all_tuple_types, 0>::Result >::type

>::const_type at() const
{
return (Loki::Field<0>(m_properties)).template at<i>();

}
Code extracted from file utility/Indexed_Properties.hpp, lines 265 to 271.

For examples on usage of the described utility classes, see section 5.3. Figure A.1 displays
the two-stage element selection process that takes place when method at() is called. In
the code snippet at the figure’s top, the indexed properties’ instance is embedded in a
node as described at the beginning of this section.

PropertyType 0 PropertyType nPropertyType 1

m_properties ...

node.data.at<index>()

index type

index value

Figure A.1: Two-stage selection process for elements of indexed properties.

Summarizing, class template Indexed Properties provides a facility to store typed
objects inside a two-level tuple hierarchy. On most compilers, the tuple type introduces
no space overhead compared to a handwritten class with each member specified explic-
itly. It is useful when the number of properties stored in a node is fixed and does not
change frequently. A similiar technique was developed independently from our work by
Emily Winch [Win01]. Instead of using names of enumarations, she uses names of empty
classes to access elements inside a tuple. However, she offers no facility for combining
groups of named objects.

The utility library also contains the class template Named Properties. It also stores
typed elements, however it allows dynamic addition and deletion of elements belonging
to a type. The idea behind this class is to store one map from the standard library for
every type. A member template selects the appropriate map by its template instantiation
argument and returns the element depending on a key. Named Properties is not discussed
further, because it is not used in the GILF prototype currently.

A.2 · A Generic Logging Facility 129

A.2 A Generic Logging Facility

Logging a running system’s activities is one of the major aids in monitoring and diag-
nosing the system. Our utility library contains a generic logging facility that can be cus-
tomized to meet different system’s demands. The following design criteria guided the
implementation:

• A log can be used like an output stream, and all types that provide an output oper-
ator can be written to such a log stream.

• A log has a fixed number of categories, each category can be redirected to a different
output stream.

• Each category has an associated threshold value that can be changed during the
system’s run time.

• Each logging message will prepend a string generated in a policy function, for ex-
ample to print date and time.

Using the log class template is quite easy. One has to instantiate a log for the system,
and then one can write to the log’s categories like to an output stream with the typical
output operator notation.

Log requires three template parameters. CategoryCount, the first one, is a value pa-
rameter that specifies the number of categories Log’s instantiation should have. Access-
ing a category outside the valid range [0, ..., CategoryCount-1] results in a standard
exception of type runtime error. PrologPolicy is a policy template parameter. A pro-
log policy has to provide a function print prolog() that returns a std::string. Finally,
ThresholdType specifies the type of the categories’ thresholds. A category’s threshold
determines if a logging message will be written at all.

〈Listing A.14: Class Template Log〉 ≡
template <std::size_t CategoryCount = 1,

class PrologPolicy = detail::Log_Default_Prolog_Policy,
typename ThresholdType = threshold_type>

class Log : public PrologPolicy
Code extracted from file utility/Log.hpp, lines 91 to 94.

The sole Log constructor has two parameters, default stream is the default output stream
for all categories, and default threshold is the default threshold for all logging cate-
gories. Both value sets can be changed by the appropriate set methods later on.

〈Listing A.15: Log: Constructor〉 ≡
Log(std::ostream& default_stream = std::cerr,

const threshold_type& default_threshold = 1);
Code extracted from file utility/Log.hpp, lines 113 to 114.

Because each category can have its own associated output stream and threshold, they
have to be stored in containers. As the size is fixed, we use arrays. Furthermore, the mem-
ber m current category determines the category whose stream will be used for output.
Also, this category’s threshold will be compared against member m current threshold.

〈Listing A.16: Log: Members〉 ≡
private: // Members.

// Holder of the streams for every category.
std::ostream* m_ostreams[CategoryCount];
// Holder of the thresholds for every category.
threshold_type m_thresholds[CategoryCount];

130 Appendix A · The Utility Library

// The current category.
category_count_type m_current_category;
// The current threshold.
threshold_type m_current_threshold;

Code extracted from file utility/Log.hpp, lines 188 to 196.

The workhorse of Log is its member template write. It checks if the category is valid and
the threshold does not suppress output. Output is suppressed if current threshold ≥
thresholdcurrent category. After these checks, it feeds the argument x into the output stream
associated with the current logging category.

〈Listing A.17: Log: Method write〉 ≡
template <typename T>
Log& write(const T& x);

Code extracted from file utility/Log.hpp, lines 123 to 124.

The interface most visible to the user however are the application operator and of course
the output operator. The output operator simply forwards to member template write
discussed above. The application operator deserves more elaboration. The parameter
category selects the logging category for the following message. Parameter threshold
determines the importance of the message and skip prolog can be used to suppress out-
put of the string generated by the prolog policy.

〈Listing A.18: Log: Application Operator〉 ≡
Log& operator()(category_count_type category = 0,

threshold_type threshold = 0,
bool skip_prolog = false);

Code extracted from file utility/Log.hpp, lines 131 to 133.

There is one technical detail worth mentioning. Streams allow formatting of their output
through manipulators. If logging should keep this formatting, the manipulators have to
be applied to the output streams. This has to be done to three stream classes, which can
be seen in the code listing.

〈Listing A.19: Log: Stream Manipulators〉 ≡
Log& operator<<(std::ostream& (*f)(std::ostream&));
Log& operator<<(std::ios& (*f)(std::ios&));
Log& operator<<(std::ios_base& (*f)(std::ios_base&));

Code extracted from file utility/Log.hpp, lines 164 to 166.

A simple example will demonstrate the typical usage of class Log. A log l is instantiated
that has three logging categories, uses cerr as default output stream, and has a default
threshold of two. Category three is then bound to a file stream. Finally, all logging output
is wrapped inside a try-catch block.

〈Listing A.20: Log: Testcode〉 ≡
namespace gilf = GILF_Core; // namespace alias
try
{
// Create instance.
gilf::Log<3> l(std::cerr, 2);

// Bind category 2 to a file.
std::ofstream logfile("test/logfile");
l.set_stream(2, logfile);

// Examples.
l(0,0) << "Hello, world.\n";
l(1,1) << "Need " << std::setw(10) << 12.7 << std::string(" help!") << std::endl;
l(0,2) << "more tests " << 4711 << std::endl;

A.2 · A Generic Logging Facility 131

l(2,0) << "Category 2 should go to a file " << 123 << std::endl;
l(2,2) << "seems ok... " << 3.1415926 << std::endl;

}
catch (std::exception& e)
{
std::cerr << "## std::exception caught ## - " << e.what() << "\n";

}
Code extracted from file test/Log_test.cpp, lines 41 to 61.

The output generated by the example shows the default prolog policy, which prints a
message counter, followed by date and time. On the command line, this output is pro-
duced:

[0] 20:19:09, 07/08/02: Hello, world.
[1] 20:19:09, 07/08/02: Need 12.7 help!

A.3 XML Utilities

The code required to handle XML in an XGILF input stream is factored out into the XGILF
inflator classes (see appendix B.1). This code relies on XML utility classes and functions
located in the utility library.

Our project uses the XML library Xerces, developed by the Apache project. Like most
XML libraries, it uses its own string class. We like to use standard C++ components,
therefore a small function to string converts a DOMString to string from the C++ Stan-
dard Library. Xerces contains a function that transcodes an XML string into an ASCII
character string. With this character string, a std:string can be constructed. To avoid
memory leaks, the transcode buffer has to be deleted explicitly.

〈Listing A.21: Convert DOMString to C++ String〉 ≡
std::string to_string(const DOMString& s)
{
// Transcode DOMString into an ASCII string.
char *transcode_buffer = s.transcode();
// Copy this ASCII string into a std::string.
std::string tmp_string(transcode_buffer); // Copy the buffer.
// Delete transcode buffer, required by transcode().
delete [] transcode_buffer;
return tmp_string;

}
Code extracted from file utility/dom/Utility.cpp, lines 117 to 126.

Another important operation on XML nodes is to check whether they are of a given type.
In XML terminology, a node has type T if the node is an element node and its tag name
is equal to T .

〈Listing A.22: Check Type of XML DOM Node〉 ≡
bool check_element_type(const DOM_Node& node, const std::string& type)
{
// Check if node is of element type.
if (node.getNodeType() != DOM_Node::ELEMENT_NODE)
{
return false;

}
// Check the element’s type.
const DOM_Element& elem = static_cast<DOM_Element&>(const_cast<DOM_Node&>(node));
if (!(elem.getTagName().equals(type.c_str())))

132 Appendix A · The Utility Library

{
return false;

}
// Passed all tests, return true as result.
return true;

}
Code extracted from file utility/dom/Utility.cpp, lines 271 to 286.

DOM level 2 [DOM00] introduced NodeIterators and TreeWalkers, which allow selective
traversal of a DOM document. If a node will be part of the traversal is specified by
NodeFilters, which can be attached to NodeIterators and TreeWalkers. The utility library
contains several node filters. We will demonstrate the general procedure for writing a
custom node filter with the example of a node filter that accepts nodes whose element
types are given by a vector of tag names.

The constructor expects this vector of tag names as input argument and initializes the
member m types with it. The DOM interface requires a NodeFilter to override the virtual
function acceptNode, which has an input parameter of type DOM Node.

〈Listing A.23: NodeFilter Declaration〉 ≡
class Element_Nodes_By_Types : public DOM_NodeFilter
{

public: // Ctor.
Element_Nodes_By_Types(const std::vector<std::string>& types)
: m_types(types) {}

public: // Methods.
// Required override of acceptNode.
virtual short acceptNode(const DOM_Node& n) const;

private: // Members.
std::vector<std::string> m_types; // Types of valid element nodes.

}; // Element_Nodes_By_Types
Code extracted from file utility/dom/Utility.hpp, lines 91 to 105.

The implementation of acceptNode is straightforward because of the STL capabilities.
First a check is made that we deal with an DOM element node. With algorithm find from
the C++ Standard Library the vector of types is compared against the element node’s tag
name. If a match is found, the node is accepted, otherwise rejected.

〈Listing A.24: acceptNode Implementation〉 ≡
short Element_Nodes_By_Types::acceptNode(const DOM_Node& n) const
{
if (n.getNodeType() == DOM_Node::ELEMENT_NODE)
{
DOM_Element elem = static_cast<DOM_Element&>(const_cast<DOM_Node&>(n));
if (find(m_types.begin(), m_types.end(), to_string(elem.getTagName()))

!= m_types.end())
{
return DOM_NodeFilter::FILTER_ACCEPT;

}
}
return DOM_NodeFilter::FILTER_REJECT;

}
Code extracted from file utility/dom/Utility.cpp, lines 161 to 173.

A.3 · XML Utilities 133

The XML utilities also include functions for writing a DOM document to an output
stream. This is necessitated by the fact that the DOM recommendations does not con-
tain facilities for this task. At level 3, DOM will contain the long awaited Load and Save
Specification. However, at the time of this writing (Summer 2002), only a working draft
of this specification exists [W3Tr]. We provide an output operator for DOM nodes and
DOM strings. With these operators, XML nodes and their attributes can be written in a
common C++ style.

〈Listing A.25: DOM Output Operators〉 ≡
std::ostream& operator<<(std::ostream& target, const DOMString& toWrite);
std::ostream& operator<<(std::ostream& target, const DOM_Node& toWrite);

Code extracted from file utility/dom/Stream_Helper.hpp, lines 85 to 86.

A.4 Loki Extensions and Modifications

Loki, the generic component library developed by Andrei Alexandrescu [Ale01], is de-
signed to be customizable to the concrete application’s needs. This approach has proven
very successful, and Loki is a major building block of the GILF system implementation.
Nevertheless, in some places it lacks functionality or is not as flexible as desired. In these
cases, we provided extensions for, or modifications to Loki.

A.4.1 Factory and Smart Pointers

The factory design pattern [GaHeJo+95] is a useful aid in situations where class objects
belonging to a class hierarchy have to be created based on external type identifiers. For
example, GILF nodes in external representation contain a type identifier such that in the
deserialization process specific nodes can be identified relying solely on this information.
In Loki, the Factory class template provides a generic component that implements the
factory design pattern ([Ale01], chapter 8).

According to Loki’s design concept, most aspects of the factory’s behavior can be cus-
tomized with template parameters that represent policies. However, at one point Factory
suffers from over-specification. The return type of the member method CreateObject is
AbstractProduct*, a pointer type. This effectively precludes object factories from return-
ing smart pointers as abstract product, because these are usually returned as value types,
not as pointers. The Factory that is part of libutility removes this restriction, which
becomes apparent when looking at its method create:

〈Listing A.26: Factory Method create〉 ≡
/// Ask for product creation by identifier.
AbstractProduct create(const Identifier& id);

Code extracted from file utility/Factory.hpp, lines 72 to 73.

In GILF, the internal representation uses smart pointers for memory management of its
tree-like node structure, see chapter 5. Therefore, this modification of Loki’s Factory class
template was essential for our implementation.

A.4.2 Truncating a Typelist

The algorithm for truncating a typelist to its first n elements exemplifies the functional
style of template metaprogramming now common in advanced C++ libraries. All typelist
related algorithms reside in namespace TL, which itself is part of namespace Loki.

134 Appendix A · The Utility Library

〈Listing A.27: Template Metafunction FirstN〉 ≡
namespace TL
{
// FirstN class template declarartion.
<see Listing A.28 on page 134>

// Partial template specializations that end recursion.
<see Listing A.29 on page 134>

// General case: take type at head position and continue for n-1 elements.
<see Listing A.30 on page 134>

} // namespace TL
Code extracted from file utility/Loki_Extension.hpp, lines 83 to 113.

First, the declaration of the general class template FirstN is given. It has two template
parameters, which represent the input parameters of the template metafunction FirstN.
TList is the input typelist, and N is the number of elements to which TList should be
truncated. If this number is larger than the typelist’s size, a compilation error will occur.

〈Listing A.28: FirstN: Declaration〉 ≡
template <class TList, unsigned int N> struct FirstN;

Code extracted from file utility/Loki_Extension.hpp, line 87, referenced in listing A.27.

Then, the two template specializations that end the recursion are given. The first one
handles empty typelists by simply creating a type definition Result that is set to Null-
Type. The second one handles an argument value of 1 for the input parameter N. In this
case, the type definition Result is set to the head of the input typelist.
〈Listing A.29: FirstN: Terminate Recursion〉 ≡

// Empty typelists.
template <unsigned int N> struct FirstN<NullType, N>
{
typedef NullType Result;

};
// End recursion for N = 1 by returning the head.
template <class Head, class Tail>
struct FirstN<Typelist<Head, Tail>, 1>
{
typedef TYPELIST_1(Head) Result;

};
Code extracted from file utility/Loki_Extension.hpp, lines 92 to 102, referenced in listing A.27.

Finally, the most general template specialization handles the recursive invocation of the
FirstN class template pattern matching. It sets the typelist Result to the head of TList,
appended with the tail of TList, truncated to N − 1 elements.
〈Listing A.30: FirstN: Recursion〉 ≡

template <class Head, class Tail, unsigned int N>
struct FirstN<Typelist<Head, Tail>, N>
{
typedef Typelist<Head, typename FirstN<Tail, N-1>::Result > Result;

};
Code extracted from file utility/Loki_Extension.hpp, lines 107 to 111, referenced in listing A.27.

A.4.3 Visiting Subnodes

Loki’s Visitor class template represents the visitor design pattern [GaHeJo+95]. In the
GILF prototype, transformations after deserialization of the external representation are

A.4 · Loki Extensions and Modifications 135

performed with visitors that are derived from the Loki Visitor component. A common
task is to restrict the visitation of subnodes to those of one type. This is exactly the pur-
pose of the function template visit children.

The input parameter node is the node whose children will be visited, and the tem-
plate parameter ChildType specifies the type to which the visitation should be restricted.
Finally, visitor is a reference to the visitor whose Visit methods will be called.

〈Listing A.31: Function Template visit children〉 ≡
template <class ChildType>
void visit_children(GILF_Core::GILF_Node& node, BaseVisitor& visitor)
{
// Get the sequence type for GILF nodes.
typedef GILF_Core::GILF_Node::sequence_type seq_type;

// Look for subnodes of type ChildType.
seq_type nodes;
node.template get_children<ChildType>(nodes);
for (seq_type::iterator it = nodes.begin(); it != nodes.end(); ++it)
{
(*it)->Accept(visitor);

}
}

Code extracted from file utility/Loki_Extension.hpp, lines 133 to 146.

The algorithm proceeds as follows. First, a sequence container of GILF Nodes is filled
with all subnodes of node that are of type ChildType. This relies on the function template
get children, which is part of the Node class template (see section A.1). Then, a loop
iterates over all these nodes and dispatches based on their type with the virtual method
Accept.

Appendix B

Auxiliary libgilf Components

B.1 Transforming External into Internal Representation

A major building block of the GILF system is the deserialization framework that is re-
sponsible for transformation of an external into the internal GILF representation. The
following design constraints describe the cornerstones of the framework.

Multiple Input Sources Different input streams can act as input source, for example
files, http connections, and so on.

Multiple External Representations The facilities provided by the GILF library should
support multiple external representations. A GILF input source can designate its
serialization format and the GILF system should be able to handle different formats
transparently.

The goal of the deserialization framework is to provide the GILF library user with a
simple application interface whose outcome is a valid GILF node hierarchy.

B.1.1 The Application Interface

The interface presented to the library user consists primarily of two classes.

Input_Source This class is intended as the high-level interface for accessing GILF input
sources. Different constructors control the selection of the input stream. Based
on the information found in the prolog (see section 4.2) which describe the used
serialization protocol, a corresponding accessor object is created.

Accessor The accessor encapsulates the access to the raw data using the serialization
protocol of the external format.

Class Input_Source In order to initialize reading from a file stream, we provide a con-
structor that takes a file name as input parameter.
〈Listing B.1: Input Source: Constructor for Files〉 ≡

Input_Source(const std::string& file_name);
Code extracted from file gilf/Input_Source.hpp, line 66.

Providing constructors for various input streams is the key to fulfilling our first require-
ment on the deserialization framework. We will show the basic functioning of such a
constructor using the example from above. The constructor for files performs the follow-
ing steps:

B.1 · Transforming External into Internal Representation 137

1. It tries to open the specified input file, honoring a list of search paths while locating
the file.

2. The file is scanned for a GILF processing instruction.

3. The serialization protocol and its version are extracted from the processing instruc-
tion.

4. Based on the protocol information, the appropriate accessor object is created.

5. If an error condition occurred in the above steps, a C++ standard exception of type
runtime_error is thrown. This can happen if the file is not found, none or an in-
complete processing instruction is present, or the protocol is not supported.

Step 4 is the key to fulfilling our second design constraint. By creating an accessor
that is able to handle the detected protocol, every input source can be encoded with a
different protocol. This code listing shows how an accessor is created for XGILF inflation:

〈Listing B.2: Input Source: Creating an XGILF Accessor〉 ≡
if (m_protocol == "xgilf")
{
g_log(lc_std, lt_medium)
<< "Creating xgilf::Accessor with file: " << this_name << ".\n";

m_accessor.reset(new xgilf::Accessor(this_name));
}

Code extracted from file gilf/Input_Source.cpp, lines 171 to 176.

The created accessor will be assigned to the data member m_accessor, and the accessor is
residing in namespace xgilf in which all components are defined that are responsible for
deserialization of XGILF nodes. This will be discussed in conjunction with class Accessor.
Member m_accessor is a shared pointer to an accessor.

〈Listing B.3: Input Source: Accessor Members Type〉 ≡
typedef boost::shared_ptr<Accessor> accessor_type;

Code extracted from file gilf/Input_Source.hpp, line 71.

The most important method of Input_Source returns a constant reference to the source’s
accessor object. With this object the deserialization process can be started. Method
add_search_path adds the string parameter path to the list of search paths that will be
scanned while locating the input source file.

〈Listing B.4: Input Source: Public Methods〉 ≡
// Access to the input source’s instantiated accessor object.
const accessor_type& accessor() const;

// Add path to the search paths.
static void add_search_path(const std::string& path);

Code extracted from file gilf/Input_Source.hpp, lines 76 to 80.

Class Accessor The purpose of class Accessor is to hide the actual protocol handling
behind a uniform interface. As we have seen in the last section, an Input_Source object
holds an accessor, which is created depending on the information in the prolog of the
GILF input stream. This reveals the nature of class Accessor, which is intended as pure
base class. Each protocol will have its own subclass of Accessor, and an Input_Source
will keep a pointer to one of these subclasses.

138 Appendix B · Auxiliary libgilf Components

The goal of deserializing an external format is receiving a GILF node that represents
the external format’s content. Therefore, an accessor has to provide a method that returns
a GILF node. The remaining issue is at what granularity extracting parts of the external
GILF input stream should be allowed. Currently, an accessor supports specifying units.
Adding other methods that allow extracting functions, algorithms, and so on pose no
conceptual challenge.

〈Listing B.5: Class Accessor〉 ≡
class Accessor
{

public: // Ctors & dtor.
// Virtual destructor.
virtual ˜Accessor() {};

public: // Methods.
GILF_Node::sptr_type get_unit(const std::string& unit_id) const;

private: // Virtual methods.
virtual GILF_Node::sptr_type do_get_unit(const std::string& unit_id) const = 0;

}; // class Accessor
Code extracted from file gilf/Accessor.hpp, lines 39 to 52.

The Accessor base class declaration follows the nonvirtual interface idiom [Sut01], which
mandates separating the interface of a class from its implementation details, like virtual
methods for hooks. Therefore, method get_unit is the nonvirtual, public interface for
accessors, and subclasses override the virtual, but private method do_get_unit. The im-
plementation of the public method is simply a forward call to the virtual hook.

〈Listing B.6: Class Accessor: Forwarding to Virtual Method〉 ≡
GILF_Node::sptr_type Accessor::get_unit(const std::string& unit_id) const
{
return do_get_unit(unit_id);

}
Code extracted from file gilf/Accessor.cpp, lines 31 to 34.

Now that the general application interface and the interaction between Input_Source and
accessors have been discussed, we will show how to implement a specific accessor.

B.1.2 Implementing an Accessor

We will look at the accessor for XGILF input sources. All components involved in deseri-
alizing an XGILF stream are located in namespace xgilf. The central role in this process
plays the subclass of base class Accessor.

〈Listing B.7: XGILF Accessor: Declaration〉 ≡
class Accessor : public GILF_Core::Accessor

Code extracted from file gilf/xgilf/Accessor.hpp, line 55.

It is also called Accessor, but because it resides in namespace xgilf, no name clash re-
sults. A constructor is present that mirrors the input source constructor for files, it takes
the same argument, a file name. It is responsible for initializing the XML system that will
be used to process the file. In turn, the virtual destructor has to terminate the XML sys-
tem. Accessor contains the static counter m_initialized that is used to prevent multiple
initializations and terminations of the XML system.

B.1 · Transforming External into Internal Representation 139

〈Listing B.8: XGILF Accessor: Constructor and Destructor〉 ≡
Accessor(const std::string& file_name);
virtual ˜Accessor();

Code extracted from file gilf/xgilf/Accessor.hpp, lines 62 to 63.

We employ the Xerces C++ library from the Apache XML project [ASF], in particular its
DOM [DOM00] implementation. The constructor also sets up a DOM parser that will
be used to operate on the XML input. This also comprises checking the XML input for
well-formedness, and optionally validating it against the XGILF DTD (see chapter 4).

〈Listing B.9: XGILF Accessor: DOM Parser Member〉 ≡
// DOM parser for working on the document.
boost::scoped_ptr<DOMParser> m_DOMparser;

Code extracted from file gilf/xgilf/Accessor.hpp, lines 78 to 79.

All these prerequisites show that a subclass of the base class Accessor hides all the details
of handling a specific GILF serialization format inside the library. However, the major task
in writing an accessor still remains to be performed, which is implementing the virtual
method do_get_unit. It expects a unit identifier and returns a GILF node containing the
deserialized unit. The task can be split up in two steps.

1. The starting point of the unit specified by the identifier has to be found in the lo-
cated XGILF document.

2. Starting at the found unit element, we have to expand its properties. Further on, its
child elements and their properties have to be expanded recursively.

The first step is almost trivial with a DOM parser, with method getElementsByTagName
one can retrieve a list of all units in the XGILF document, and this list can then be tra-
versed, comparing its id attribute against the given unit identifier.

〈Listing B.10: XGILF Accessor: Get Node List of Unit Elements〉 ≡
DOM_NodeList nl = (m_DOMparser->getDocument()).getElementsByTagName("unit");
unsigned int nll = nl.getLength();
g_log(lc_std, lt_low) << nll << " unit(s) found." << "\n";

// Look for unit by id.
DOM_Node unit_node;
for (size_t i = 0; i < nll; i++)
{
DOM_Node mynode = nl.item(i);
if (((DOM_Element &) mynode).getAttribute("id").equals(unit_id.c_str()))
{
unit_node = mynode;
break;

}
}

Code extracted from file gilf/xgilf/Accessor.cpp, lines 180 to 194.

Step two is what deserializing XGILF elements is all about. Expanding properties is per-
formed by reading the XML element’s attributes, which are strings, and convert them to
the type of the corresponding properties in GILF’s internal representation (see section 5.3).
For this purpose, special function templates, so called property converters, are defined.

Expanding child elements involves traversing these child elements and creating GILF
nodes based on the elements’ types. Then, their attributes have to be converted to typed
properties, also. This recursive process is controlled with inflators.

140 Appendix B · Auxiliary libgilf Components

Property Converters XGILF property converters are function templates that all have
the same declaration, except for the function name. They have one template parameter
NodeSptrType, whose valid bindings are to shared pointers of GILF nodes that contain
the property which is the target of the conversion1. The first value parameter is such
a shared pointer to a GILF node holding the target property of the conversion, and the
second value parameter is the XML element which holds the attribute that will be subject
to conversion. This listing shows the declaration of a property converter that handles
value attributes (see section 4.10.1):

〈Listing B.11: XGILF Value Property Converter: Declaration〉 ≡
template <class NodeSptrType>
void convert_value(NodeSptrType& node, const DOM_Element& element);

Code extracted from file gilf/xgilf/Property_Converter.hpp, lines 102 to 103.

We elaborated on two details from the implementation of this property converter. The
next listings shows how the value property is accessed in a GILF node using method
at of class Indexed_Properties, which is used as data member GILF nodes. We get a
reference to the value property in order to manipulate its content directly in the function
body. The listing also displays how the kind attribute of the XGILF element is read into a
standard string.

〈Listing B.12: XGILF Value Property Converter: Accessing a Property〉 ≡
// Get reference to value property.
value_iprop::type& value = node->data.template at<value_iprop>();
// Get the kind attribute.
std::string kind_attr = to_string(element.getAttribute(c_attr_value_kind));

Code extracted from file gilf/xgilf/Property_Converter.cpp, lines 341 to 344.

The specification of XGILF element val states that values of different types can be stored
in the corresponding attribute. Therefore, we store the value property in a struct holding
a Boost any container and a kind enumeration. The enumeration allows us to cast the any
object back to its contained type, which can be seen in the logging output line at the end
of the listing. The listing shows how a value struct is filled in the case of a floating point
value.

〈Listing B.13: XGILF Value Property Converter: Converting a Floating Point Value〉 ≡
value.kind = kind_real;
// Convert the attribute string to a double.
char ** end_ptr = 0;
value.value = std::strtod(value_attr.c_str(), end_ptr);
g_log(lc_debug, lt_low) << "value[real] detected: "

<< boost::any_cast<double>(value.value) << ".\n";
Code extracted from file gilf/xgilf/Property_Converter.cpp, lines 464 to 469.

Inflators Property converters perform the task of transforming a node’s serialized prop-
erties into typed properties in GILF’s internal representation, in our case study these prop-
erties are made persistent as XML attributes. In order to deserialize the whole content of
a node, this has to be done recursively for the child nodes. This is exactly the objective
of inflators. Looking back at the XGILF accessor, we can see how an empty unit node is
inflated using the corresponding inflator:

〈Listing B.14: XGILF Accessor: Inflate Unit Element〉 ≡
// First, we create an empty unit GILF node.
GILF_Node::sptr_type unit = gilf::g_node_factory->create(c_node_id_unit);
// Second, we create a unit inflator.
boost::shared_ptr<Inflator> unit_inflator =

1Violation of this requirement is reported at compile time.

B.1 · Transforming External into Internal Representation 141

g_inflator_factory->create(c_node_id_unit);
// Finally, we inflate the empty unit using the inflator.
unit_inflator->inflate(unit, unit_node);

Code extracted from file gilf/xgilf/Accessor.cpp, lines 211 to 217.

First, an empty unit node is created with the global node g_node_factory, using a string
constant as type identifier. In the same way, a unit inflator is created with the global
inflator factory2.

Now, we can call the public method inflate on the unit inflator, which will deseri-
alize the content of the detected XGILF unit element unit_node (see listing B.10) into the
empty node unit. The base class Inflator also employs the nonvirtual interface idiom,
thus the public method inflate forwards to the virtual, private implementation method
do_inflate.

〈Listing B.15: Class Inflator: Declaration〉 ≡
class Inflator
{
public:

void inflate(GILF_Node::sptr_type& node, const DOM_Node& dom_node,
bool recursive = true) const;

private:
virtual void do_inflate(GILF_Node::sptr_type& node, const DOM_Node& dom_node,

bool recursive) const = 0;
}; // class Inflator

Code extracted from file gilf/xgilf/Inflator.hpp, lines 54 to 62.

A third argument to method inflate can restrict inflation to direct child nodes. Every
GILF node has a twin inflator. The knowledge present in an inflator is what properties
have to be set and what kind of child nodes have to be inflated. The final question that
remains to be answered is how does one define a specific inflator? We take a pragmatic
approach and examine the XGILF inflator of the algorithm element.

〈Listing B.16: Class Algorithm_Inflator: Type Definition〉 ≡
typedef Inflator_Core<detail::Algorithm_Inflator_Traits> Algorithm_Inflator;

Code extracted from file gilf/xgilf/Algorithm_Inflator.hpp, line 124.

The algorithm inflator is just a type definition to an instantiation of class Inflator_Core.
This class is a traits and policy based skeleton for inflators. In general, a new inflator
is created by defining the corresponding Inflator_Traits class and providing a type
definition like in the code snippet presented above.

An instantiation of Inflator_Core is a valid inflator, because it inherits from the base
class Inflator. The adaptability is reached by also inheriting from a traits class.

〈Listing B.17: Class Inflator_Core: Declaration〉 ≡
template <class InflatorTraits>
class Inflator_Core : public Inflator, public InflatorTraits

Code extracted from file gilf/xgilf/Inflator_Core.hpp, lines 78 to 79.

Inflator traits consist of three type definitions and two methods. The type definition
node_type specifies the inflation’s target node type, node_sptr_type the type of a shared
pointer to such a node. Furthermore, node_id_type specifies the type of identifiers used
to query the inflator factory. As GILF and XGILF identifiers are both strings, they are of
the same type.

〈Listing B.18: Algorithm Inflator Traits: Type Definitions〉 ≡
typedef GILF_Core::Algorithm node_type;

2The inflator factory is an almost identical twin of the node factory (see section 5.3.3), but it returns
inflators instead GILF nodes.

142 Appendix B · Auxiliary libgilf Components

typedef boost::shared_ptr<node_type> node_sptr_type;
typedef GILF_Core::node_id_type node_id_type;

Code extracted from file gilf/xgilf/Algorithm_Inflator.hpp, lines 72 to 74.

More interesting are the two protected policy methods that every inflator inherits from
its inflator traits. Implementing these methods is the main liability for adding an XGILF
inflator.

〈Listing B.19: Algorithm Inflator Traits: Method Declarations〉 ≡
// Set values of GILF node node_sptr by reading the XML element.
void set_node_values(node_sptr_type& node_sptr,

const DOM_Element& element) const;
// Inflate all children of node node_sptr by reading the XML element.
void inflate_children(node_sptr_type& node_sptr,

const DOM_Element& element) const;
Code extracted from file gilf/xgilf/Algorithm_Inflator.hpp, lines 80 to 85.

Method set_node_values sets the properties of the GILF node pointed to by node_sptr. To
this end, it calls property converters which operate on the XGILF element. Implementing
set_node_values boils down to a sequence of calls to the property converters, for example
this call sets the algorithm’s identifier and reference property:

〈Listing B.20: Algorithm Inflator Traits: Setting the Identifier Property〉 ≡
convert_id(node_sptr, element);
node_sptr->data.at<idref_iprop>() =
to_string(element.getAttribute(c_attr_idref));

Code extracted from file gilf/xgilf/Algorithm_Inflator.cpp, lines 73 to 75.

The identifier property converter adds identifiers of global nodes to the global symbol ta-
ble (see section 5.4.2). These identifiers are all prefixed with the unit’s identifier, therefore
the detection of appropriate nodes is straightforward.

The second policy method inflate_children is responsible for inflating child nodes
of the XGILF element and appending them to node_sptr. The core of this work is travers-
ing the element’s child node list and performing inflation recursively. The inflator core
provides auxiliary function templates that allow selective inflation based on node type
identifiers. Thus, an inflate_children implementation is simplified to a sequence of
consistency checks and calls to these auxiliary functions. We will have a look at one of
those function templates:

〈Listing B.21: Inflator Core: Auxiliary Method for Child Node Inflation〉 ≡
template <typename NodeSptrType, typename NodeIdType>
void inflate_typed_children(NodeSptrType& node_sptr,

const DOM_Element& element,
NodeIdType node_id,
bool single = false);

Code extracted from file gilf/xgilf/Inflator_Core.hpp, lines 106 to 110.

This function template inflates all child nodes of element whose node type identifier is
equal to node_id. If the boolean parameter single is true, then only the first child node is
inflated. All inflated child nodes are appended to the GILF node denoted by the shared
pointer node_sptr. The template parameters are typically deduced from the argument’s
types at the function’s calling site. There exists another overload of the function template
that expects a list of node type identifiers, which allows inflation of nodes of various
types.

However, the main achievement of Inflator_Core is its generic implementation of
the virtual method do_inflate (see listing B.15). The function body relies on type infor-
mation from the inflator traits and its actual behavior is adapted by the policy methods

B.1 · Transforming External into Internal Representation 143

set_node_values and inflate_children. Implementing a generic version of do_inflate
in terms of these type information and policy methods proceeds as follows:

1. The node gilf_node is cast to the actual subclass it holds using the type information
present in the traits class. The same is done with the DOM node, which is cast to an
DOM element.

2. With full type information present, the properties of the node are set using the
policy method set_node_values.

3. The last step is to inflate the child nodes using the policy method inflate_chidren.
This happens only if the boolean flag recursive is true.

B.1.3 Roundup

Figure B.1 is an overview on the central classes involved in the serialization framework,
and their relationships. It is restricted to the example used in the preceding deliberation
of the framework, which deals with inflating XGILF elements.

xgilf::Inflator_Core
+node_type
+node_sptr_type
+node_id_type

-do_inflate()

InflatorTraits

xgilf::Inflator
+inflate()
-do_inflate()

+set_node_values
+inflate_childrenxgilf::Accessor

-m_DOMparser

+~Accessor()
-do_get_unit()

Accessor
+~Accessor()
+get_unit()
-do_get_unit()

...
unit_inflator =
 g_infator_factory
 ->create(c_unit_id);
...

Input_Source
+m_protocol
+m_version
+m_accessor

+Input_Source()
+accessor()

Figure B.1: Class relationships inside the serialization framework.

Finally, we list desirable actions in the framework and what is needed to carry them
out, and where to integrate the changes.

Adding a different input stream. One has to add a constructor to class Input_Source
that specifies the new input stream. Likewise, a constructor that matches this one
has to be added to Accessor classes that support this kind of input stream.

Adding a new inflator. The corresponding traits class has to be defined. This is divided
into defining three type definitions and implementing two policy methods.

Supporting a different serialization protocol. At the top level, an accessor subclass has
to be implemented. In general, this includes implementing a new inflator hierarchy.
This requires considerable work, but most aspects can be automated, as was shown
for XGILF inflators with class Inflator_Core and the related auxiliary function tem-
plates.

144 Appendix B · Auxiliary libgilf Components

B.2 Code Generation

We explained how type and function bindings transformed with an Instantiator result
in monomorphic algorithm and data structure nodes in section 5.6. At this point, for the
first time we can actually generate real machine code from our intermediate representa-
tion. Code generation is defined by two major tasks.

1. Translating GILF’s statement nodes into the corresponding code sequences in the
target language or machine architecture.

2. Providing target code for all built-in algorithms and data structures.

The basis for code generation is the global instance table that was filled with monomor-
phic instances of algorithms and data structures using our instantiation engine. A code
generator that participates in the GILF system has to translate these nodes into the desired
target language. Most of the work required for implementing such a code generator poses
no conceptual challenges, because we have already eliminated the generic parts with the
transformations applied during instantiation application. Only if we want to support
run-time instantiation, special dispatch code is necessary that initiates just-in-time com-
pilation.

The GILF prototype contains a translator from GILF’s internal representation to C++.
However, we generate completely nongeneric C++ code, the instantiation engine of C++
will not be used. This ensures that no idiosyncrasies of C++’s instantiation semantics will
interfere with the front-end semantics. This was one of the goals of the GILF project. We
will now briefly describe the prototype’s code generation component.

B.2.1 Visitation Graphs

A data structure’s visitation graph is quite simple. Its root node is a data node, and built-
in data structures can even stop here. User defined data structures also have to walk their
element subnodes. Such data structures require the creation of either a record or union
compound, whose field types are given by algorithm or data structure designators. Algo-
rithm designators result in synthesis of typed function pointers, whereas data structure
designators create ordinary entries in the corresponding record or union compound.

data elem*
data-dsg

algorithm-dsg

Figure B.2: Visitation graph of visitor Emitter for data structures.

Like for data structures, built-in algorithms simply process the algorithm node and
synthesize the correct code, optinally including a library that implements the required
GILF core library features. Visitation of algorithm nodes by an emitter with user defined
content proceeds in three major steps.

First, the all value parameters are visited and the algorithm’s signature is emitted.
Next, we assemble the algorithm’s local symbol table by traversing its store node and its
subnodes. This way we will generate code for all variables and constants used inside the
algorithm body. Finally, the statements describing the algorithm’s behavior are visited
and corresponding code is emitted. The most elaborate node to handle in this hierarchy

B.2 · Code Generation 145

is the call node which represents a function call. A function call can be either direct, in
this case the call target is given by an algorithm designator, or indirect, in this case the
target is denoted by a variable or constant designator. If the target language does not
support named parameters, we have to visit the algorithm’s function node and traverse
its parameters. We will then impose some order on the parameters. Finally, we can
generate code for the function call by visiting the parameter bindings, which will specify
this call’s arguments. They will be emitted in the predefined order.

algorithm param(1) params *

stat-seq

(3)

if*

call

...

const-dsgvariable-dsg

bind-parambind-params * expr

store
(2)

var
val

*

* const

data-dsg

algorithm-dsg
data-dsg

algorithm-dsg

algorithm-dsg

function paramparams *

Figure B.3: Visitation graph of visitor Emitter for algorithms.

B.2.2 Implementation

Declaration The C++ code emitter is implemented as Loki visitor in class Emitter. As
usual, it has to inherit from all the node classes that it will visit during data structure or
algorithm hierarchy traversal.

〈Listing B.22: Class Emitter〉 ≡
class Emitter : public Loki::BaseVisitor,

public Loki::Visitor<Data>,
public Loki::Visitor<Element>,
...

Code extracted from file gilf/Emitter.hpp, lines 54 to 86.

Types The emitter has two public types. Type line_type is used to store one line of
emitted code, we create the code in standard strings. Multiple lines are stored in the line
sequence type, which is a std::deque container holding elements of line_type.

〈Listing B.23: Class Emitter: Public Types〉 ≡
// The type of output for one single line.
typedef std::string line_type;
// The container sequence type that holds lines.
typedef std::deque<line_type> line_seq_type;

Code extracted from file gilf/Emitter.hpp, lines 101 to 104.

Methods The result of an emitter can be queried with method get_code. It returns the
line sequence container m_code that holds the complete code which was generated during
emitter visitation.

146 Appendix B · Auxiliary libgilf Components

〈Listing B.24: Class Emitter: Public Method get_code〉 ≡
// Access the code of this emitter.
const line_seq_type& get_code() const { return m_code; }

Code extracted from file gilf/Emitter.hpp, lines 109 to 110.

Most identifier names used in GILF are obviously not C++ standard conformant. This
is accomplished by method trim_symbol, that expects an arbitrary identifier and turns
it into a trimmed, i.e. a standard conformant, C++ identifier. We see the power of STL
algorithms in the shape of std::for_each, which lets this work collapse into one line of
code. However, we still have to provide the function object Trimmer, which checks each
character iterated over by for_each and performs transformations where applicable.

〈Listing B.25: Class Emitter: Private Method trim_symbol〉 ≡
id_iprop::type Emitter::trim_symbol(const id_iprop::type& symbol)
{
return (std::for_each(symbol.begin(), symbol.end(), Trimmer())).symbol();

}
Code extracted from file gilf/Emitter.cpp, lines 1060 to 1063.

The subnodes of statement sequences have to be visited in their original order, and
method visit_sequential performs exactly this job.

〈Listing B.26: Class Emitter: Private Method visit_sequential〉 ≡
// Visit all subnodes of node sequentially.
void visit_sequential(GILF_Node& node);

Code extracted from file gilf/Emitter.hpp, lines 285 to 286.

Visit Methods The Visit method overrides of a visitor contain the bulk of its imple-
mentation, which is also true for the C++ emitter. Visitation begins either at a Data or an
Algorithm GILF node. We start by looking at the emitter methods responsible for data
structure code generation.

The method is split up in two sections. The first one handles built-in data structures
and the second one generates code for user defined data structures. Built-in data struc-
tures from the core library (see appendix C) can either be mapped directly to C++ types
or require types from small support libraries. Data structures in GILF are denoted by their
identifier, and therefore we provide C++ type definitions for the built-in data structures
such that we can simply use the trimmed identifier name as C++ type name. For exam-
ple, the architecture specific unsigned machine word u_mtype.d_uword will result in the
following C++ type definition:

typedef unsigned int u_mtype_DOTd_uword;

GILF supports two kinds of user defined data structures, record and union types, respec-
tively. These are both available in C++, the former one as struct, and the latter one as
union. The data structure’s kind can be retrieved from the node’s kind property. The
data structure’s trimmed identifier is appended after the compound’s kind name, and
the whole code line is pushed at the end of the code container m_code. Then we visit
the nested element nodes in order to create the data structure’s field entries. Eventu-
ally, the closing parenthesis is added to the code line container, which completes the C++
compound.

〈Listing B.27: Class Emitter: Generating User Defined Data Structures〉 ≡
// Check the kind of the data structure.
if (node.data.at<data_kind_iprop>() == data_kind_record)
{
code = "struct ";

}

B.2 · Code Generation 147

else if (node.data.at<data_kind_iprop>() == data_kind_union)
{
code = "union ";

}
// Add the trimmed id as struct/union name.
code += trim_symbol(id);
code += " {";
m_code.push_back(code);
// Now visit the element subnodes and create field entries.
visit_nodes_by_type<Element>(node);
// Now close the struct/union.
m_code.push_back("};");

Code extracted from file gilf/Emitter.cpp, lines 143 to 159.

Element node visitation proceeds straightforward. The field’s type is extracted from the
designator subnode (see figure B.2), and the field name is given by the element’s iden-
tifier. We also have to check for pointer types and annotate the field’s type name ac-
cordingly. The following code lines show the code generated for an instantiation of a
heterogeneous pair type.

struct
u_main_DOTd_pair_het_DOTtp_0_OPu_mtype_DOTd_uword_CP_DOTtp_1_OPu_mtype_DOTd_byte_CP {

u_mtype_DOTd_uword e1;
u_mtype_DOTd_byte e2;

};

Method Visit(Algorithm&) controls code emission for algorithms. The structure is also
divided in two parts like for data structures as it handles either built-in or user defined
algorithms. We provide inline definitions for built-in algorithms, analogously to the type
definitions provided for built-in data structures. The inline definitions are slightly more
complex, because we have to generate the return type and the correct number of typed
parameters. The inline specifier ensures that we do not introduce a function call indi-
rection for simple operations that often map directly to machine code instructions.

The top-level code for generating user defined algorithms closely resembles the cor-
responding visitation graph path (see figure B.3). It starts a new code line by adding the
trimmed algorithm identifier. This signature line will be completed during traversal of
the parameter nodes. The algorithm’s body is made up of its local symbol table and its
statement sequence.

〈Listing B.28: Class Emitter: Generating User Defined Algorithms〉 ≡
// Add the trimmed id as algorithm name.
m_code.push_back(trim_symbol(id));
// First, the function signature is created.
visit_nodes_by_type<Params>(node);
// Now emit the algorithm’s body.
m_code.push_back("{");
// Write local output parameter if present.
handle_local_output_var();
// Add the variables and constants.
visit_nodes_by_type<Storage>(node, true);
// Now generate the statements.
visit_nodes_by_type<Statements>(node, true);
m_code.push_back("}");

Code extracted from file gilf/Emitter.cpp, lines 305 to 317.

One of the central issues in translating GILF to C++ is generating function signatures and
function calls. The problems arises from the disparity in specifying function parameters

148 Appendix B · Auxiliary libgilf Components

in C++ and GILF. The former one uses positional parameters, and the latter one named
parameters. Furthermore, the return parameter in C++ is only given by type and is not
present in the parameter list in parentheses. These facts force us to impose an order
on the algorithm’s parameters specified in GILF. In the prototype, we simply use their
occurrence in the internal representation.

Another interesting point in code emission for algorithms are the employed passing
conventions. We use either reference or value semantics, based on the size of parameter’s
type. This decision process is factored out into the private method resolve_passing_mod,
which returns a qualified passing modifier, if a unqualified was present in the GILF code.
The only additional parameter to this method is the parameter’s type, represented by its
type_id.

〈Listing B.29: Class Emitter: Deciding Parameter Passing Conventions〉 ≡
// Get the parameter’s passing convention.
passing_mod_iprop::type passing =
resolve_passing_mod(node.data.at<passing_mod_iprop>(), type_id);

Code extracted from file gilf/Emitter.cpp, lines 406 to 408.

The local variables and constants are created very similar to fields in user defined data
structures, which was discussed above. The only novel feature here is that they can
be initialized to values. Most of the work for generating values is delegated to Boost’s
lexical_cast library. We have to extract the value from the Boost any type based on its
kind property, the following code snippet shows the conversion of a 32-bit interger value.

〈Listing B.30: Class Emitter: Writing Values with Boost lexical_cast〉 ≡
m_code.back() +=
boost::lexical_cast<std::string>(boost::any_cast<boost::uint32_t>(value.value));

Code extracted from file gilf/Emitter.cpp, lines 646 to 647.

Most statement constructs present in GILF map to C++ statements without problems. We
have to be careful that the sequence ordering is retained, but otherwise code generation
is mostly a mechanical process. Sequential traversal of statement sequences is enforced
in method visit_sequential, for example in the following code:

〈Listing B.31: Class Emitter: Visiting Statement Sequences in Order〉 ≡
void Emitter::Visit(Statements& node)
{
visit_sequential(node);

}
Code extracted from file gilf/Emitter.cpp, lines 664 to 667.

As noted before, code generation for function calls is more challenging because of C++’s
positional parameter identification. We proceed as follows. The call’s target is given
by the call’s designator subnode’s identifier reference property. Next, an empty ordering
table is pushed onto a stack. The stack is necessary, because GILF support nested function
calls. This table is then filled in method order_parameters based on the ordering of the
called function’s parameters in GILF’s internal representation. With this information at
hand, binding value parameters can begin. It starts by visiting all parameter bindings and
caches the argument expressions, and then creates the function call with the precomputed
order of parameters.

〈Listing B.32: Class Emitter: Translating the call Node〉 ≡
// Push an empty parameter order table on its stack.
m_params_order.push_back(order_table_type());
// Fill the parameter order table.
order_parameters(node.data.at<idref_iprop>());
// Push an argument container with the size of the order table’s size.
m_arguments.push_back(line_seq_type(m_params_order.back().size()));

B.2 · Code Generation 149

// Now, generate the function call arguments.
m_code.back() += "(";
visit_nodes_by_type<Bind_Params>(node);
m_code.back() += ")";
// Remove the argument container from its stack.
m_arguments.pop_back();
// Remove the parameter order table from its stack.
m_params_order.push_back(order_table_type());

Code extracted from file gilf/Emitter.cpp, lines 917 to 930.

We finally want to emphasize the point that the C++ code generator present in the GILF
prototype is intended for explanatory purposes only. The generated code was not opti-
mized for execution speed or space efficiency. However, the resulting programs run at
reasonable speed.

Appendix C

The XGILF Core Library

This appendix contains the specification of the GILF core library, written in XGILF. The
core library and the GILF specification (see chapter 4) represent the interface a compiler
front-end has to target when generating GILF. In addition to the features available in GILF,
the core library provides the interface to built-in data structures and algorithms, as well
as some predefined general purpose function and type signatures.

C.1 Boolean

Unit u_bool contains a boolean type and related operations. The type’s signature is acces-
sible by identifier t_bool, the data structure by identifier d_bool, and the type binding by
identifier bt_bool. In the next sections, we will in general omit the definition and bind-
ing nodes for brevity, because most built-in data structures and algorithms nodes can be
derived mechanically from the declaration.

At the beginning of the file, the XML processing instructions are visible, which denote
that we deal with an XGILF file, using version 1.0. The digest is currently computed with
the tool md5sum and embedded in the xgilf processing instruction.
〈Listing C.1: System Unit for Boolean Type〉 ≡

<?gilf version="1.0" protocol="xgilf" level="1"?>
<?xgilf version="1.0" digest="e817a0e2b01f15bcff3dd6d4571ed67f"?>
...
<xgilf>

<!--==-->
<unit id="u_bool" name="std_boolean">

<!-- unit dependencies -->
<import>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>

</import>

<!-- declaration part, shareable among system files -->
<declare>
<!-- type bool -->
<type id="u_bool.t_bool" name="bool"/>

<!-- boolean operations -->
<function id="u_bool.f_and" name="and">
<params count="3">
<param pass="in" id="p_0" name="arg1"> <binding-dsg ref="bt_bool"/> </param>
<param pass="in" id="p_1" name="arg2"> <binding-dsg ref="bt_bool"/> </param>

C.1 · Boolean 151

<param pass="out!" id="p_2" name="result"> <binding-dsg ref="bt_bool"/> </param>
</params>

</function>

<function id="u_bool.f_or" name="or">
<params count="3">
<param pass="in" id="p_0" name="arg1"> <binding-dsg ref="bt_bool"/> </param>
<param pass="in" id="p_1" name="arg2"> <binding-dsg ref="bt_bool"/> </param>
<param pass="out!" id="p_2" name="result"> <binding-dsg ref="bt_bool"/> </param>

</params>
</function>

<function id="u_bool.f_not" name="not">
<params count="2">
<param pass="in" id="p_0" name="self"> <binding-dsg ref="bt_bool"/> </param>
<param pass="out!" id="p_1" name="result"> <binding-dsg ref="bt_bool"/> </param>

</params>
</function>

</declare>

<!-- definition part, for code generation -->
<define>
<data id="u_bool.d_bool" ref="u_bool.t_bool" built-in="yes"/>

<algorithm id="u_bool.a_and" ref="u_bool.f_and" built-in="yes"/>
<algorithm id="u_bool.a_or" ref="u_bool.f_or" built-in="yes"/>
<algorithm id="u_bool.a_not" ref="u_bool.f_not" built-in="yes"/>
<algorithm id="u_bool.a_==" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_bool.a_!=" ref="u_func.f_!=" built-in="yes"/>

</define>

<!-- bindings -->
<bind>
<!-- bind type definitions to type declarations -->
<bind-type id="u_bool.bt_bool" ref="u_bool.t_bool">
<data-dsg ref="u_bool.d_bool"/>

</bind-type>

<!-- bind algorithms to functions -->
<bind-func id="u_bool.bf_and" ref="u_bool.f_and">
<algo-dsg ref="u_bool.a_and"/>

</bind-func>
...

<bind-func id="u_bool.bf_==" ref="u_func.f_==">
<bind-static-params id="bsp_local">
<bind-tp ref="tp_0"><binding-dsg ref="u_bool.bt_bool"/></bind-tp>

</bind-static-params>
<algo-dsg ref="u_bool.a_=="/>

</bind-func>
...

</bind>

</unit> <!-- std_boolean [u_bool] -->

</xgilf>
Code extracted from file ../xgf/core_units/boolean.xgf, lines 3 to 108.

152 Appendix C · The XGILF Core Library

C.2 Machine Types

The unit u_mtype contains types and related functions that provide access to machine
types and operations on them natural to the deployment architecture. Therefore, no guar-
antees about sizes in bits can be made, but we make sure that the operations require no
special code for canonization. Type t_byte contains the smallest addressable memory
unit, and type t_word is the native integral computation unit for the host architecture.
Both types have an unsigned counterpart. Also, a type for single precision floating point
computations is available by identifier t_float, and one for double precision by identifier
t_floatd.

For all these types exist algorithms that perform comparison and arithmetic opera-
tions. They reference function signatures from unit u_func, see section C.6.

At the beginning of the function bindings one can see how the built-in comparison
for equality algorithm for bytes is bound to the corresponding general purpose function
signature. First, the instantiation parameter is bound to bt_byte, and then the built-in
algorithm a_==_byte is designated as binding target.
〈Listing C.2: System Unit for Native Machine Types〉 ≡

<unit id="u_mtype" name="std_machtypes">

<!-- unit dependencies -->
<import>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>
</import>

<!-- declaration part, shareable among system files -->
<declare>
<!-- machine types, architecture dependent -->
<type name="byte" id="u_mtype.t_byte"/>
<type name="ubyte" id="u_mtype.t_ubyte"/>
<type name="word" id="u_mtype.t_word"/>
<type name="uword" id="u_mtype.t_uword"/>

<type name="float" id="u_mtype.t_float"/>
<type name="floatd" id="u_mtype.t_floatd"/>

</declare>

<!-- definition part, for code generation -->
<define>
<!-- the built-in machine types -->
<data id="u_mtype.d_byte" ref="u_mtype.t_byte" built-in="yes"/>
<data id="u_mtype.d_word" ref="u_mtype.t_word" built-in="yes"/>
<data id="u_mtype.d_ubyte" ref="u_mtype.t_ubyte" built-in="yes"/>
<data id="u_mtype.d_uword" ref="u_mtype.t_uword" built-in="yes"/>

<data id="u_mtype.d_float" ref="u_mtype.t_float" built-in="yes"/>
<data id="u_mtype.d_floatd" ref="u_mtype.t_floatd" built-in="yes"/>

<!-- comparison algorithms for the built-in machine types -->
<algorithm id="u_mtype.a_==_byte" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_mtype.a_==_ubyte" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_mtype.a_==_word" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_mtype.a_==_uword" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_mtype.a_==_ufloat" ref="u_func.f_==" built-in="yes"/>
<algorithm id="u_mtype.a_==_ufloatd" ref="u_func.f_==" built-in="yes"/>
...

</define>

C.2 · Machine Types 153

<!-- bindings -->
<bind>
<!-- bind type definitions to type declarations -->
<bind-type id="u_mtype.bt_byte" ref="u_mtype.t_byte">
<data-dsg ref="u_mtype.d_byte"/>

</bind-type>
<bind-type id="u_mtype.bt_ubyte" ref="u_mtype.t_ubyte">
<data-dsg ref="u_mtype.d_ubyte"/>

</bind-type>
<bind-type id="u_mtype.bt_word" ref="u_mtype.t_word">
<data-dsg ref="u_mtype.d_word"/>

</bind-type>
<bind-type id="u_mtype.bt_uword" ref="u_mtype.t_uword">
<data-dsg ref="u_mtype.d_uword"/>

</bind-type>

<bind-type id="u_mtype.bt_float" ref="u_mtype.t_float">
<data-dsg ref="u_mtype.d_float"/>

</bind-type>
<bind-type id="u_mtype.bt_floatd" ref="u_mtype.t_floatd">
<data-dsg ref="u_mtype.d_floatd"/>

</bind-type>

<!-- bind algorithms to functions -->
<!-- comparison functions -->
<bind-func id="u_mtype.bf_==_byte" ref="u_func.f_==">
<bind-static-params>
<bind-tp ref="tp_0"> <binding-dsg ref="u_mtype.bt_byte"/> </bind-tp>

</bind-static-params>
<algo-dsg ref="u_mtype.a_==_byte"/>
</bind-func>
...

</bind>

</unit> <!-- std_machtypes [u_mtype] -->
Code extracted from file ../xgf/core_units/machtype.xgf, lines 29 to 457.

C.3 Integers

The unit u_int provides integral types of fixed size. The size n is given in bits, however
only values for n are valid where n = 8 · 2m with m ≥ 0 holds. On 32-bit architectures,
64-bit operations have to be realized in software.

In front of the binding section the constants for all required sizes (8, 16, 32, and 64)
are defined in the storage section. The binding section contains the built-in bindings,
for example bf_==_int8 compares two signed 8-bit integers and returns a boolean result
value. We see that both the constant value parameter and the type parameter are bound
in the static parameter binding subnode.

〈Listing C.3: System Unit for Fixed Size Integer Types〉 ≡
<unit id="u_int" name="std_integer">

<!-- unit dependencies -->
<import>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>
</import>

<!-- declaration part, shareable among system units -->

154 Appendix C · The XGILF Core Library

<declare>
<!-- signed integers, parameterized by size in bytes -->
<type id="u_int.t_int#n" name="int#n">
<const-params count="1">
<const-param id="cp_0" name="#bits">
<type-dsg ref="u_mtype.t_uword"/>

</const-param>
</const-params>

</type>

<!-- unsigned integers, parameterized by size in bytes -->
<type id="u_int.t_uint#n" name="uint#n">
<const-params count="1">
<const-param id="cp_0" name="#bits">
<type-dsg ref="u_mtype.t_uword"/>

</const-param>
</const-params>

</type>
</declare>

<!-- definition part, for code generation -->
<define>
<data id="u_int.d_int8" ref="u_int.t_int#n" built-in="yes"/>
<data id="u_int.d_int16" ref="u_int.t_int#n" built-in="yes"/>
<data id="u_int.d_int32" ref="u_int.t_int#n" built-in="yes"/>
<data id="u_int.d_int64" ref="u_int.t_int#n" built-in="yes"/>
<data id="u_int.d_uint8" ref="u_int.t_uint#n" built-in="yes"/>
<data id="u_int.d_uint16" ref="u_int.t_uint#n" built-in="yes"/>
<data id="u_int.d_uint32" ref="u_int.t_uint#n" built-in="yes"/>
<data id="u_int.d_uint64" ref="u_int.t_uint#n" built-in="yes"/>

<algorithm id="u_int.a_==_int8" ref="u_func.f_==" built-in="yes"/>
...
<algorithm id="u_int.a_!=_int8" ref="u_func.f_!=" built-in="yes"/>
...
<algorithm id="u_int.a_lt_int8" ref="u_func.f_lt" built-in="yes"/>
...
<algorithm id="u_int.a_gt_int8" ref="u_func.f_gt" built-in="yes"/>
...
<algorithm id="u_int.a_lte_int8" ref="u_func.f_lte" built-in="yes"/>
...
<algorithm id="u_int.a_gte_int8" ref="u_func.f_gte" built-in="yes"/>
...

</define>

<store>
<!-- numerical constants for bit counts -->
<const id="u_int.c_8">
<binding-dsg ref="u_mtype.bt_uword"/><val val="8" kind="dec"/>

</const>
<const id="u_int.c_16">
<binding-dsg ref="u_mtype.bt_uword"/><val val="16" kind="dec"/>
</const>
<const id="u_int.c_32">
<binding-dsg ref="u_mtype.bt_uword"/><val val="32" kind="dec"/>

</const>
<const id="u_int.c_64">
<binding-dsg ref="u_mtype.bt_uword"/><val val="64" kind="dec"/>

</const>
</store>

C.3 · Integers 155

<!-- bindings -->
<bind>
<!-- bind type definitions to type declarations -->
<bind-type id="u_int.bt_int8" ref="u_int.t_int8">
<bind-static-params>
<bind-cp ref="cp_0"> <const-dsg ref="u_int.c_8"/> </bind-cp>

</bind-static-params>
<data-dsg ref="u_int.d_int8"/>

</bind-type>
...
<!-- bind algorithms to functions -->
<bind-func id="u_int.bf_==_int8" ref="u_func.f_==">
<bind-static-params>
<bind-tp ref="tp_0"> <binding-dsg ref="u_int.bt_int8"/> </bind-tp>
<bind-cp ref="cp_0"> <const-dsg ref="u_int.c_8"/> </bind-cp>
</bind-static-params>
<algo-dsg ref="u_int.a_==_int8"/>

</bind-func>
...

</unit> <!-- std_integer [u_int] -->
Code extracted from file ../xgf/core_units/integer.xgf, lines 16 to 598.

C.4 Arrays

All declarations and definitions related to arrays are available through unit u_array. In
GILF, we differentiate between fixed-size arrays whose size is static at compile time, and
those whose size is set at runtime, or to be more precise, at allocation time with a variable
argument. The former one’s type is referenced by identifier t_[], and the latter one’s
by t_[c]. Both have one type instantiation parameter that declares the array elements’
type, and t_[c] has an additional constant instantiation parameter that indicates the ar-
ray’s size. For dynamically allocated arrays, a special allocate function f_allocate[] is
declared, which has one value parameter which expects the array’s size. Furthermore,
built-in algorithms for querying an array’s size (a_size[]), as well as setting (a_set[n])
and retrieving (a_get[n]) elements by index are provided.

〈Listing C.4: System Unit for Array Types〉 ≡
<unit name="std_array" id="u_array">

<!-- unit dependencies -->
<import>
<source input-src="machtype.xgf"> <unit-dsg ref="u_mtype"/> </source>
</import>

<!-- declaration part, shareable among system units -->
<declare>
<!-- static array, size fixed at run time -->
<type name="runtime array" id="u_array.t_[]">
<type-params count="1"> <type-param id="tp_0" name="T"/> </type-params>
</type>

<!-- static array, size fixed at compile time -->
<type name="compile time array" id="u_array.t_[c]">
<type-params count="1"> <type-param id="tp_0" name="T"/> </type-params>
<const-params count="1">
<const-param name="size" id="cp_0">
<type-dsg ref="u_mtype.t_uword"/>

156 Appendix C · The XGILF Core Library

</const-param>
</const-params>

</type>

<!--
* allocate[] function
* Allocates memory for a fixed size array on the heap and returns
* reference to the new array.
-->
<function name="allocate[]" id="u_array.f_allocate[]">
<type-params count="1"> <type-param name="T[]" id="tp_0"/> </type-params>
<params count="2">
<param pass="in" id="p_0" name="size"><binding-dsg ref="u_mtype.bt_uword"/></param>
<param pass="out_ref!" id="p_1" name="new[]"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

<!--
* size[] function
* Returns number of items storeable in the given array.
-->
<function name="size[]" id="u_array.f_size[]">
<type-params count="1"> <type-param name="T[]" id="tp_0"/> </type-params>
<params count="2">
<param pass="in" id="p_0" name="T[]"><static-param-dsg ref="tp_0"/></param>
<param pass="out!" id="p_1" name="size"><binding-dsg ref="u_mtype.bt_uword"/></param>

</params>
</function>

<!--
* get[n] function
* Returns the item at position n in the given array.
-->
<function name="get[n]" id="u_array.f_get[n]">
<type-params count="2">
<type-param name="T[]" id="tp_0"/>
<type-param name="T" id="tp_1"/>

</type-params>
<params count="3">
<param pass="in_ref" id="p_0" name="[]"><static-param-dsg ref="tp_0"/></param>
<param pass="in" id="p_1" name="n"><binding-dsg ref="u_mtype.bt_uword"/></param>
<param pass="out!" id="p_2" name="item"><static-param-dsg ref="tp_1"/></param>
</params>

</function>

<!--
* set[n] function
* Sets the item at position n in the given array.
-->
<function name="set[n]" id="u_array.f_set[n]">
<type-params count="2">
<type-param name="T[]" id="tp_0"/>
<type-param name="T" id="tp_1"/>

</type-params>
<params count="3">
<param pass="in_ref" id="p_0" name="[]"><static-param-dsg ref="tp_0"/></param>
<param pass="in" id="p_1" name="n"><binding-dsg ref="u_mtype.bt_uword"/></param>
<param pass="in" id="p_2" name="item"><static-param-dsg ref="tp_1"/></param>
</params>

</function>

C.4 · Arrays 157

</declare>

<!-- definition part, for code generation -->
<define>
<data id="u_array.d_[]" ref="u_array.t_[]" built-in="yes"/>
<data id="u_array.d_[c]" ref="u_array.t_[c]" built-in="yes"/>

<algorithm id="u_array.a_allocate[]" ref="u_array.f_allocate[]" built-in="yes"/>
<algorithm id="u_array.a_size[]" ref="u_array.f_size[]" built-in="yes"/>
<algorithm id="u_array.a_get[n]" ref="u_array.f_get[n]" built-in="yes"/>
<algorithm id="u_array.a_set[n]" ref="u_array.f_set[n]" built-in="yes"/>

</define>
...

</unit> <!-- std_array [u_array] -->
Code extracted from file ../xgf/core_units/array.xgf, lines 17 to 143.

C.5 Unicode Characters

GILF supports Unicode characters with two types in unit u_unicode. Type t_UCchar repre-
sents one Unicode character, and an array of Unicode characters is represented with type
t_UCchar[]. An equality check for Unicode characters is also provided, which compares
the character codes of two t_UCchars, but does ignore any compositions. More elaborate
comparisons of Unicode character strings can be built on top of this basic character check.

〈Listing C.5: System Unit for Unicode Characters〉 ≡
<unit name="std_unicode" id="u_unicode" digest="86F2983E">

<!-- unit dependencies -->
<import>
<source input-src="array.xgf"> <unit-dsg ref="u_array"/> </source>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>
</import>

<!-- declaration part, shareable among system files -->
<declare>
<!-- type t_UCchar: single, 16 bit wide unicode character -->
<type name="UC character" id="u_unicode.t_UCchar"/>
<!-- type t_UCchar[]: array of unicode characters -->
<type name="UC character[]" id="u_unicode.t_UCchar[]"/>

</declare>

<!-- definition part, for code generation -->
<define>
<data id="u_unicode.d_UCchar" ref="u_unicode.t_UCchar" built-in="yes"/>
<data id="u_unicode.d_UCchar[]" ref="u_unicode.t_UCchar[]" built-in="yes"/>

<!-- comparison algorithm for equality of two unicode characters, compares
just the unicode character code, not some dynamically composed characters -->

<algorithm id="u_unicode.a_==_UCchar" ref="u_func.f_==" built-in="yes"/>
</define>

<!-- bindings -->
...

</unit> <!-- std_unicode [u_unicode] -->
Code extracted from file ../xgf/core_units/unicode.xgf, lines 17 to 69.

158 Appendix C · The XGILF Core Library

C.6 Functions

A collection of general purpose function signatures is available in unit u_func, for exam-
ple for comparison and arithmetic operations. Additionally, it contains function signa-
tures that trigger special behavior in the back-end when they are bound to user defined
algorithms.

Function main Instantiation application starts by looking for a unit’s function binding for
f_main. Then, all dependent instantiations are generated recursively and program
execution starts by calling the designated algorithm.

Function allocate The allocate function presents the interface to GILF’s dynamic mem-
ory allocation system. It will try to allocate heap memory for a single object of the
instantiation type parameter and returns a reference to the newly allocated object.
If the allocation request could not be fulfilled even after a garbage collector invoca-
tion, a null reference is returned.

Function clone This function is relevant in two contexts. First, if a function argument is
passed by value, and a binding for the argument’s type to the clone function exists,
the designated clone algorithm will be called to clone the original argument. The
same holds true for assignments. Notice that only bindings for user defined data
structures are valid instantiation parameters, because built-in data structures are
handled implicitly.

〈Listing C.6: System Unit for Function Declarations〉 ≡
<unit id="u_func" name="std_function">

<!-- unit dependencies -->
<import>
<source input-src="boolean.xgf"> <unit-dsg ref="u_bool"/> </source>
<source input-src="unicode.xgf"> <unit-dsg ref="u_unicode"/> </source>
<source input-src="machtype.xgf"> <unit-dsg ref="u_mtype"/> </source>
<source input-src="array.xgf"> <unit-dsg ref="u_array"/> </source>

</import>

<!-- declaration part, shareable among system files -->
<declare>
<!--
* main function
* Every user program has to provide an algorithm for this function in its
* main unit. The function will be called at program startup.
-->
<function id="u_func.f_main" name="main">
<params count="2">
<param pass="in" id="p_0" name="args">
<binding-dsg ref="u_func.bt_mainargs"/>
</param>
<param pass="out!" id="p_1" name="return state">
<binding-dsg ref="u_mtype.bt_word"/>

</param>
</params>

</function>

<!--
* allocate function
* Allocates memory from the heap for a single dynamic object.

C.6 · Functions 159

-->
<function id="u_func.f_allocate" name="allocate">
<type-params count="1"> <type-param id="tp_0" name="T"/> </type-params>
<params count="1">
<param pass="out_ref!" id="p_0" name="new_obj"><static-param-dsg ref="tp_0"/></param>
</params>
</function>

<!--
* clone function
* This function will be called by the back-end when a reference object is
* passed by value. Thus, any reference type that wants to be called in such a
* manner has to provide an implementation of and a binding to this function.
-->
<function name="clone" id="u_func.f_clone">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="2">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out_ref!" id="p_1" name="result"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

<!-- comparison functions -->
<function name="==" id="u_func.f_==">
<type-params count="1"> <type-param name="N" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>

</params>
</function>

<function name="!=" id="u_func.f_!=">
<type-params count="1"> <type-param name="N" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>

</params>
</function>

<function name="lt" id="u_func.f_lt">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>
</params>

</function>

<function name="gt" id="u_func.f_gt">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>

</params>
</function>

<function name="lte" id="u_func.f_lte">

160 Appendix C · The XGILF Core Library

<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>

</params>
</function>

<function name="gte" id="u_func.f_gte">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><binding-dsg ref="u_bool.bt_bool"/></param>

</params>
</function>

<!-- arithmetic functions -->
<function name="+" id="u_func.f_+">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

<function name="++" id="u_func.f_++">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="1">
<param pass="inout!" id="p_0" name="self"><static-param-dsg ref="tp_0"/></param>
</params>
</function>

<function name="-" id="u_func.f_-">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

<function name="--" id="u_func.f_--">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="1">
<param pass="inout!" id="p_0" name="self"><static-param-dsg ref="tp_0"/></param>
</params>
</function>

<function name="*" id="u_func.f_*">
<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

<function name="/" id="u_func.f_/">

C.6 · Functions 161

<type-params count="1"> <type-param name="T" id="tp_0"/> </type-params>
<params count="3">
<param pass="in" id="p_0" name="arg1"> <static-param-dsg ref="tp_0"/> </param>
<param pass="in" id="p_1" name="arg2"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_2" name="result"><static-param-dsg ref="tp_0"/></param>

</params>
</function>

</declare>

<bind>
<!-- type binding for array of unicode strings -->
<bind-type id="u_func.bt_mainargs" ref="u_array.t_[]">
<bind-static-params>
<bind-tp ref="tp_0"> <binding-dsg ref="u_unicode.bt_UCchar[]"/> </bind-tp>
</bind-static-params>
<data-dsg ref="u_array.d_[]"/>

</bind-type>
</bind>

</unit> <!-- std_function [u_func] -->
Code extracted from file ../xgf/core_units/function.xgf, lines 17 to 187.

Appendix D

Examples

D.1 Mapping SUCHTHAT to GILF

The goal of this project was to provide a back-end for generic programming languages,
with special interest in diectly supporting SUCHTHAT. The imperative statements in
SUCHTHAT are adopted from Aldes [LoCo92], and mapping them to the high-level state-
ments available in gilf (see section 4.8.2) is almost trivial. In [Wei97] such a mapping to
C++ statements is presented, which can be reused without great modifications.

The task of mapping the declarative TECTON part present in SUCHTHAT to GILF is
more challenging1. At the lowest level, TECTON provides function declarations, com-
posed of function identifiers and their arity, which consists of sort identifiers. These con-
structs can be mapped to GILF function and type declarations. TECTON concepts group
functions and sorts. This can be simulated in GILF by introducing a unit node for every
concept that contains corresponding function and type declarations.

At this point, we can translate SUCHTHAT to GILF and let the back-end perform its
work. However, the intermediate code does not contain any semantic information ex-
pressed in TECTON that restrict legal concept instances. This kind of front-end language
specific information can be stored in GILF’s extend node2.

D.2 Factorial

D.2.1 XGILF Representation

This section presents the example discussed in chapter 2. The factorial function is trans-
lated to XGILF manually, providing an iterative and a recursive algorithm for its compu-
tation. The declarations and defintions are located in unit u_math. Unit u_main contains a
simple main application that calls the factorial function with a constant value, which re-
quires complete binding information. Notice how the called function becomes a required
function of algorithm a_main.

"../xgf/examples/factorial.xgf" 162 ≡
<?xml version="1.0" standalone="yes"?>
<?gilf version="1.0" protocol="xgilf"?>
<?xgilf digest="b78065c29fbbd41ea10ae9ebd7db3607" version="1.0"?>
<!--==

1TECTON declarations are discussed in section 2.3.
2The conclusions mention this aspect of GILF in more detail.

D.2 · Factorial 163

* Example file for XGILF: factorial.xgf
===-->
<xgilf>

<!--==-->
<!-- user defined unit: u_math -->
<unit name="math" id="u_math">
<!-- unit dependencies -->
<import>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>
</import>

<!-- declaration part, shared among system components -->
<declare>
<!-- function factorial: Calculates the factorial for a given number. -->
<function id="u_math.f_fact" name="factorial">
<type-params count="1"> <type-param id="tp_0" name="N"/> </type-params>
<params count="2">
<param pass="in" id="p_0" name="n"> <static-param-dsg ref="tp_0"/> </param>
<param pass="out!" id="p_1" name="n!"> <static-param-dsg ref="tp_0"/> </param>
</params>

</function>
</declare>

<!-- definition part, for code generation -->
<define>
〈Iterative Factorial Algorithm 164〉
〈Recursive Factorial Algorithm 165〉

</define>
</unit> <!-- math [u_math] -->

<!--==-->
<!-- user defined main unit [u_main] -->
<unit name="main" id="u_main">
<!-- unit dependencies -->
<import>
<source input-src="function.xgf"> <unit-dsg ref="u_func"/> </source>
<source input-src="machtype.xgf"> <unit-dsg ref="u_mtype"/> </source>
<source input-src="factorial.xgf"> <unit-dsg ref="u_math"/> </source>

</import>

<define>
<!-- main algorithm -->
<algorithm ref="u_func.f_main" id="u_main.a_main" name="main">
<!-- list of required generic functions -->
<func-params count="1">
<func-param id="r_fact"> <func-dsg ref="u_math.f_fact"/> </func-param>
</func-params>

<!-- local symbol table -->
<store>
<const id="c_0">
<binding-dsg ref="u_mtype.bt_uword"/><val kind="dec" val="21"/>

</const>
<const id="c_1">
<binding-dsg ref="u_mtype.bt_word"/><val kind="dec" val="0"/>

</const>
</store>

<!-- algorithm body -->

164 Appendix D · Examples

<stat-seq>
<call ref="u_math.f_fact">
<binding-dsg ref="u_main.bf_fact"/>
<bind-params>
<bind-param ref="p_0"> <expr><const-dsg ref="c_0"/></expr> </bind-param>
</bind-params>

</call>
<return> <expr><const-dsg ref="c_1"/></expr> </return>
</stat-seq>

</algorithm>
</define>

<!-- binding table for the main unit -->
<bind>
<!-- bind main function -->
<bind-func id="u_main.bf_main" ref="u_func.f_main">
<algo-dsg ref="u_main.a_main"/>

</bind-func>
<!-- bind algorithm(s) to factorial function -->
〈Bindings for Function Factorial 167〉
</bind>

</unit>

</xgilf>

The iterative algorithm introduces three dependent function symbols, two for arithmetic
operations and one for comparison. The implemenation of the algorithm is straightfor-
ward, it uses the GILF for statement node.

〈Iterative Factorial Algorithm 164〉 ≡
<!-- ## Iterative implementation of factorial. ## -->
<algorithm id="u_math.a_facti" ref="u_math.f_fact" name="factorial_iter" >

<!-- list of required generic functions -->
<func-params count="3">
<func-param id="r_*"> <func-dsg ref="u_func.f_*"/> </func-param>
<func-param id="r_lte"> <func-dsg ref="u_func.f_lte"/> </func-param>
<func-param id="r_++"> <func-dsg ref="u_func.f_++"/> </func-param>
</func-params>

<!-- symbol table local to algorithm -->
<store>
<!-- counter i -->
<var name="i" id="v_0"> <static-param-dsg ref="tp_0"/> </var>
<!-- constant 1 -->
<const id="c_0"> <static-param-dsg ref="tp_0"/><val val="1" kind="dec"/> </const>
</store>

<!-- now the algorithm definition -->
<stat-seq>
<label id="l_0">step 1: init n!</label>
<assign>
<var-dsg ref="p_1"/> <expr> <const-dsg ref="c_0"/> </expr>
</assign>

<label id="l_1">step 2: compute factorial</label>
<for>
<expr> <!-- i<=n -->
<call ref="u_func.f_lte">
<static-param-dsg ref="r_lte"/>

D.2 · Factorial 165

<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="v_0"/></expr> </bind-param>
<bind-param ref="p_1"> <expr><var-dsg ref="p_0"/></expr> </bind-param>
</bind-params>

</call>
</expr>
<for-pre> <!-- i=1 -->
<stat-seq>
<assign>
<var-dsg ref="v_0"/>
<expr> <const-dsg ref="c_0"/> </expr>
</assign>

</stat-seq>
</for-pre>
<for-post> <!-- i++ -->
<stat-seq>
<call ref="u_func.f_++">
<static-param-dsg ref="r_++"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="v_0"/></expr> </bind-param>

</bind-params>
</call>

</stat-seq>
</for-post>
<stat-seq>
<assign> <!-- n! = n! * i -->
<var-dsg ref="p_1"/>
<expr>
<call ref="u_func.f_*">
<static-param-dsg ref="r_*"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="p_1"/></expr> </bind-param>
<bind-param ref="p_1"> <expr><var-dsg ref="v_0"/></expr> </bind-param>
</bind-params>

</call>
</expr>

</assign>
</stat-seq>

</for>

<label id="l_2">step 3</label>
<return> <expr><var-dsg ref="p_1"/></expr> </return>

</stat-seq>
</algorithm>

Definition referenced in part 162.

The recursive algorithm for computing a number’s factorial differs technically in one
major aspect from the iterative one presented before. It introduces one additional depen-
dent function symbol r_factr. This symbol represents the recursive invocation of the
algorithm itself. Its use is exemplified in the algorithm’s body.

〈Recursive Factorial Algorithm 165〉 ≡
<!-- ## Recursive implementation of factorial. ## -->
<algorithm name="factorial_rec" id="u_math.a_factr" ref="u_math.f_fact">

<!-- list of required generic functions -->
<func-params count="4">
<func-param id="r_*"> <func-dsg ref="u_func.f_*"/> </func-param>
<func-param id="r_lte"> <func-dsg ref="u_func.f_lte"/> </func-param>

166 Appendix D · Examples

<func-param id="r_-"> <func-dsg ref="u_func.f_-"/> </func-param>
<func-param id="r_factr"> <func-dsg ref="u_math.f_fact"/> </func-param>
</func-params>

<!-- symbol table local to algorithm -->
<store>
<!-- constant 1 -->
<const id="c_0"> <static-param-dsg ref="tp_0"/> <val val="1" kind="dec"/> </const>
</store>

<stat-seq>
<if>
<!-- if (n <= 1) return 1 -->
<expr>
<call ref="u_func.f_lte">
<static-param-dsg ref="r_lte"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="p_0"/></expr> </bind-param>
<bind-param ref="p_1"> <expr><const-dsg ref="c_0"/></expr> </bind-param>
</bind-params>

</call>
</expr>
<stat-seq>
<return> <expr><const-dsg ref="c_0"/></expr> </return>

</stat-seq>
<!-- return n*fact(n-1) -->
<else>
<stat-seq>
<return>
<expr><call ref="u_func.f_*"> <!-- n*fact(n-1) -->
<static-param-dsg ref="r_*"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="p_0"/></expr> </bind-param>
<bind-param ref="p_1">
<expr><call ref="u_math.f_fact"> <!-- fact(n-1) -->
<static-param-dsg ref="r_factr"/>
<bind-params>
<bind-param ref="p_0">
<expr><call ref="u_func.f_-"> <!-- n-1 -->
<static-param-dsg ref="r_-"/>
<bind-params>
<bind-param ref="p_0"> <expr><var-dsg ref="p_0"/></expr> </bind-param>
<bind-param ref="p_1"> <expr><const-dsg ref="c_0"/></expr> </bind-param>
</bind-params>

</call></expr>
</bind-param>

</bind-params>
</call></expr>

</bind-param>
</bind-params>

</call></expr>
</return>

</stat-seq>
</else>

</if>
</stat-seq>

</algorithm>

Definition referenced in part 162.

D.2 · Factorial 167

Finally, we have to provide the bindings of the factorial function f_fact to its implement-
ing algorithms. We present the binding that will result in an instantiation with the built-in
unsigned integer type, in GILF available through data structure u_mtype.bt_uword.

〈Bindings for Function Factorial 167〉 ≡
<bind-func id="u_main.bf_fact" ref="u_math.f_fact">
<bind-static-params>
<bind-tp ref="tp_0"> <binding-dsg ref="u_mtype.bt_uword"/> </bind-tp>
</bind-static-params>
<!-- bind recursive algorithm to factorial function -->
<algo-dsg ref="u_math.a_factr">
<bind-static-params>
<bind-fp ref="r_lte">
<binding-dsg ref="u_mtype.bf_lte_uword"/>

</bind-fp>
<bind-fp ref="r_*">
<binding-dsg ref="u_mtype.bf_*_uword"/>
</bind-fp>
<bind-fp ref="r_-">
<binding-dsg ref="u_mtype.bf_-_uword"/>
</bind-fp>
<bind-fp ref="r_factr">
<binding-dsg ref="u_main.bf_fact"/>

</bind-fp>
</bind-static-params>

</algo-dsg>
<!-- bind iterative algorithm to factorial function -->
<algo-dsg ref="u_math.a_facti">
<bind-static-params>
<bind-fp ref="r_lte">
<binding-dsg ref="u_mtype.bf_lte_uword"/>

</bind-fp>
<bind-fp ref="r_*">
<binding-dsg ref="u_mtype.bf_*_uword"/>
</bind-fp>
<bind-fp ref="r_++">
<binding-dsg ref="u_mtype.bf_++_uword"/>

</bind-fp>
</bind-static-params>

</algo-dsg>
</bind-func>

Definition referenced in part 162.

D.2.2 Generated C++ Representation

The following C++ code is produced by the GILF prototype. We assume that the it-
erative algorithm is selected and the instantiator (see section 5.6) is called on binding
u_main.bf_fact. It would be desirable to replace the mangled names by more accessible
identifiers. Notice how the generic constructs in the GILF representation presented above
where removed by the instantiator.

typedef bool u_bool_DOTd_bool;
typedef unsigned int u_mtype_DOTd_uword;
inline u_bool_DOTd_bool u_mtype_DOTa_lte_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP
(u_mtype_DOTd_uword a, u_mtype_DOTd_uword b)
{ return a <= b; }
inline u_mtype_DOTd_uword u_mtype_DOTa__PLUS_PLUS_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP
(u_mtype_DOTd_uword& a)
{ return ++a; }

168 Appendix D · Examples

inline u_mtype_DOTd_uword u_mtype_DOTa__MULT_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP
(u_mtype_DOTd_uword a, u_mtype_DOTd_uword b)
{ return a * b; }
u_mtype_DOTd_uword u_math_DOTa_facti_DOTr__MULT_OPu_mtype_DOTa__MULT_uword_DOTtp_0_OPu_\
mtype_DOTd_uword_CP_CP_DOTr__PLUS_PLUS_OPu_mtype_DOTa__PLUS_PLUS_uword_DOTtp_0_OPu_mtype_\
DOTd_uword_CP_CP_DOTr_lte_OPu_mtype_DOTa_lte_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP_CP_\
DOTtp_0_OPu_mtype_DOTd_uword_CP(u_mtype_DOTd_uword p_0)
{
u_mtype_DOTd_uword p_1;
u_mtype_DOTd_uword v_0;
const u_mtype_DOTd_uword c_0 = 1;
l_0:
p_1 = c_0;
l_1:
// for precode
v_0 = c_0;
for (;u_mtype_DOTa_lte_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP(v_0, p_0);) {
p_1 = u_mtype_DOTa__MULT_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP(p_1, v_0);
// for postcode
u_mtype_DOTa__PLUS_PLUS_uword_DOTtp_0_OPu_mtype_DOTd_uword_CP(v_0);
}
l_2:
return p_1;
}

D.3 Regression Tests

The file regress.xgf contains regression tests that check the basic functionality of our
GILF implementation.

"../xgf/examples/regress.xgf" 168 ≡
<?xml version="1.0" standalone="yes"?>
<?gilf version="1.0" protocol="xgilf"?>
<?xgilf digest="94594ccdb12b395c433dfabf27f4b4fe" version="1.0"?>

<xgilf>
<unit id="u_main">

<import>
<source input-src="machtype.xgf">
<unit-dsg ref="u_mtype"/>

</source>
</import>

<store>
<const id="u_main.c_test">
<binding-dsg ref="u_math.bt_uint32"/>
<val count="0" kind="dec" val="4711"/>

</const>
<const id="u_main.c_test2">
<binding-dsg ref="u_math.bt_uint32"/>
<val count="0" kind="hex" val="FFFF"/>

</const>
<const id="u_main.c_test3">
<binding-dsg ref="u_mword.bt_bool"/>
<val count="0" kind="bool" val="true"/>

</const>
<const id="u_main.c_test4">
<binding-dsg ref="u_math.bt_float"/>

D.3 · Regression Tests 169

<val count="0" kind="real" val="3.1415926"/>
</const>

</store>

<declare>
<!-- Homogeneous Pair (declaration). -->
<type id="u_main.t_pair" name="pair">
<type-params count="1">
<type-param id="tp_0" name="T"/>

</type-params>
</type>

<!-- Heterogeneous Pair (declaration). -->
<type id="u_main.t_pair_het" name="pair">
<type-params count="2">
<type-param id="tp_0" name="T0"/>
<type-param id="tp_1" name="T1"/>

</type-params>
</type>

<!-- Pair of words. -->
<type id="u_main.t_pair_word"/>

<!-- Allocate test funtion. -->
<function id="u_main.f_allocate_tst"/>

</declare>

<define>
<!-- Homogeneous Pair (definition). -->
<data id="u_main.d_pair" ref="u_main.t_pair" kind="record">
<elem id="e1"><static-param-dsg ref="tp_0"/></elem>
<elem id="e2"><static-param-dsg ref="tp_0"/></elem>
</data>

<!-- Heterogeneous Pair (definition). -->
<data id="u_main.d_pair_het" ref="u_main.t_pair_het" kind="record">
<elem id="e1"><static-param-dsg ref="tp_0"/></elem>
<elem id="e2"><static-param-dsg ref="tp_1"/></elem>
</data>

<!-- Pair of words. -->
<data id="u_main.d_pair_word" ref="u_main.t_pair_word" kind="record">
<elem id="e1"><binding-dsg ref="u_mtype.bt_word"/></elem>
<elem id="e2"><binding-dsg ref="u_mtype.bt_word"/></elem>
</data>

<!-- Test allocate special funtion generation. -->
<algorithm ref="u_main.f_allocate_tst" id="u_main.a_allocate_tst">
<!-- local symbol table -->
<store>
<var id="v_0" type-mod="is-ref"><binding-dsg ref="u_mtype.bt_uword"/></var>
</store>
<stat-seq>
<assign>
<var-dsg ref="v_0"/>
<expr><call ref="u_func.f_allocate">
<binding-dsg ref="u_mtype.bt_uword"/>

</call></expr>
</assign>

170 Appendix D · Examples

</stat-seq>
</algorithm>

</define>

<bind>
<!-- Homogeneous Pair (instantiation). -->
<bind-type id="u_main.bt_pair_0" ref="u_main.t_pair">
<!-- (A) describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_uword"/></bind-tp>
</bind-static-params>
<!-- (B) bind type to data structure -->
<data-dsg ref="u_main.d_pair"/>

</bind-type>

<!-- Heterogeneous Pair (instantiations). -->
<bind-type id="u_main.bt_pair_het0" ref="u_main.t_pair_het">
<!-- (A) describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_uword"/></bind-tp>
<bind-tp ref="tp_1"><binding-dsg ref="u_mtype.bt_byte"/></bind-tp>

</bind-static-params>
<!-- (B) bind type to data structure -->
<data-dsg ref="u_main.d_pair_het"/>

</bind-type>

<bind-type id="u_main.bt_pair_het1" ref="u_main.t_pair_het">
<!-- (A) describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_word"/></bind-tp>

</bind-static-params>
<binding-dsg ref="u_main.bsp_test"/>
<!-- (B) bind type to data structure -->
<data-dsg ref="u_main.d_pair_het"/>

</bind-type>

<bind-type id="u_main.bt_pair_het2" ref="u_main.t_pair_het">
<!-- (A) describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_uword"/></bind-tp>
<bind-tp ref="tp_1"><binding-dsg ref="u_main.bt_pair_het1"/></bind-tp>
</bind-static-params>
<!-- (B) bind type to data structure -->
<data-dsg ref="u_main.d_pair_het"/>

</bind-type>

<!-- Pair of words. -->
<bind-type id="u_main.bt_pair_word" ref="u_main.t_pair_word">
<data-dsg ref="u_main.d_pair_word"/>

</bind-type>

<!-- Array of words. -->
<bind-type id="u_main.bt_array_word" ref="u_array.t_[]">
<!-- describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_word"/></bind-tp>

</bind-static-params>
<data-dsg ref="u_array.d_[]"/>

</bind-type>

D.3 · Regression Tests 171

<!-- Array of array of words (flattened with bind-dsg). -->
<bind-type id="u_main.bt_aarray_word" ref="u_array.t_[]">
<!-- describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_main.bt_array_word"/></bind-tp>
</bind-static-params>
<data-dsg ref="u_array.d_[]"/>

</bind-type>

<!-- Array of array of words (nested bind-type). -->
<bind-type id="u_main.bt_aarray2_word" ref="u_array.t_[]">
<!-- describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0">

<bind-type id="u_main.bt_local_1" ref="u_array.t_[]">
<!-- describe instance -->
<bind-static-params id="local">
<bind-tp ref="tp_0"><binding-dsg ref="u_mtype.bt_word"/></bind-tp>

</bind-static-params>
<data-dsg ref="u_array.d_[]"/>

</bind-type>

</bind-tp>
</bind-static-params>
<data-dsg ref="u_array.d_[]"/>

</bind-type>

<bind-static-params id="u_main.bsp_test">
<bind-tp ref="tp_1"><binding-dsg ref="u_mtype.bt_uword"/></bind-tp>
</bind-static-params>

<!-- Bind allocate test funtion. -->
<bind-func id="u_main.bf_allocate_tst" ref="u_main.f_allocate_tst">
<algo-dsg ref="u_main.a_allocate_tst"/>

</bind-func>
</bind>

</unit>
</xgilf>

Colophon

This document was created with the LATEX typesetting system using a modified report
style. The modifications mainly affect chapter and section headings which are typeset in
sans serif font.

We use postscript fonts throughout this document. The serif font is Palatino, Avant
Garde is used as sans serif font, and the font for monospaced characters is Letter Gothic.
The font size for standard text is eleven points.

All illustrations were created with Visio, except for figure 2.1 which was generated
with GnuPlot. Limitations in the EPS export filter of Visio forced us to use “standard
postscript fonts” in illustrations, which are Times New Roman, Helvetica, and Courier,
respectively. For PDF generation, the exported EPS illustrations are converted to PDF
with epstopdf which leaves the bounding boxes intact, in contrast to Adobe Acrobat
Distiller.

The XGILF specification and SUCHTHAT examples are documented in literate pro-
gramming style, this means the displayed code is embedded in the document source.
It is the single source for both documentation and code, like the XGILF DTD loaded by
XML parsers for validation. The literate programming tool employed is a modified ver-
sion of nuweb [BrRaMe02] which supports syntax highlighting for languages available in
the listings LATEX package.

Another approach to the one source philosophy for documentation and code is taken
in the ProgDOC system [Sim02]. Code listings of the GILF prototype implementation, of
related code, and of the XGILF core library are extracted from the original source files. The
extracted lines have to be marked up with special comments, and the ProgDOC system
is used as extractor. The extracted listings are wrapped into the listings LATEX package
with a handcrafted C++ program. This generated LATEX code is very similar to the one in
the mentioned nuweb extensions.

Both approaches to code documentation have their merits, depending on the size and
kind of documented code. A large code base with many technical details and repete-
tive sections lends itself to a ProgDOC documentation style, whereas concise and dense
program or specification code is well suited for traditional literate programming.

The original document can be processed with either LATEX or pdfLATEX in order to
create Postscript or PDF output. The PDF output is completely hyper-linked with help of
the hyperref LATEX package.

Bibliography

[AADEBUG97] Third International Workshop on Automated Debugging. Linköping, Swe-
den, May 26-27, 1997. Electronic proceedings available at www.ep.liu.se/ea/cis/1997/
009.

[AADEBUG00] Fourth International Workshop on Automated Debugging. Munich, Ger-
many, August 28-30th, 2000. Electronic proceedings available at xxx.lanl.gov/abs/cs.
SE/0010035.

[AbCo01] DAVID ABRAHAMS, AND CARLOS PINTO COELHO. Effects of Metaprogramming
Style on Compilation Time. Available at www.boost.org.

[AdTiWe94] ROLF ADAMS, WALTER F. TICHY, AND ANNETTE WEINERT. The Cost of Se-
lective Recompilation and Environment Processing. ACM, Transactions on Software En-
gineering and Methodology (TOSEM), Volume 3(1), 1994.

[Adv99] ADVANCED MICRO DEVICES, INC. 3DNow! Technology Manual, Order Number
21928, Advanced Micro Devices, Inc., 1999.

[AgFrMi97] OLE AGESEN, STEPHEN N. FREUND, AND JOHN C. MITCHELL. Adding Type
Parameterization to the JavaTM Language. ACM, SIGPLAN Notices 32(10), Proceedings
of [OOPSLA97], 1997.

[AhSeUl86] ALFRED V. AHO, RAVI SETHI, AND JEFFREY D. ULLMAN. Compilers - Princi-
ples, Techniques and Tools. Addison-Wesley Publishing Company, 1986.

[Ale00] ANDREI ALEXANDRESCU. Traits: The else-if-then of Types. SIGS Publications, C++
Report, Vol. 12(4), April 2000.

[Ale01] ANDREI ALEXANDRESCU. Modern C++ Design. Generic Programming and Design
Patterns Applied. Addison-Wesley Publishing Company, 2001.

[AmBaLa97] GLENN AMMONS, THOMAS BALL, AND JAMES R. LARUS. Exploiting Hard-
ware Performance Counters with Flow and Context Sensitive Profiling. Proceedings of the
ACM SIGPLAN ’97 Conference on Programming Language Design and Implemen-
tation (PLDI’97), Las Vegas, Nevada, USA, SIGPLAN Notices 32(5), May 1997.

[AnBaBi+90] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. DU

CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN. LA-
PACK: A portable linear algebra library for high-performance computers. Computer Sci-
ence Deptartment Technical Report CS-90-105, University of Tennessee, Knoxville,
Tennessee, May 1990.

www.ep.liu.se/ea/cis/1997/009

www.ep.liu.se/ea/cis/1997/009

xxx.lanl.gov/abs/cs.SE/0010035

xxx.lanl.gov/abs/cs.SE/0010035

www.boost.org

174 BIBLIOGRAPHY

[AnBeDe+97] JENNIFER M. ANDERSON, LANCE M. BERC, JEFFREY DEAN, SANJAY

GHEMAWAT, MONIKA R. HENZINGER, SHUN-TAK A. LEUNG, RICHARD L. SITES,
MARK T. VANDEVOORDE, CARL A. WALDSPURGER, AND WILLIAM E. WEIHL. Con-
tinuous Profiling: Where Have All the Cycles Gone? ACM Transactions on Computer
Systems (TOCS), Vol. 15(4), November 1997.

[ApDaRa98] ANDREW W. APPEL, JACK DAVIDSON, AND NORMAN RAMSEY. The Zephyr
Compiler Infrastructure. University of Virginia, USA, 1998. Available at www.cs.
virginia.edu/zephyr.

[App98] ANDREW W. APPEL. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[App98b] ANDREW W. APPEL. SSA is Functional Programming. ACM, SIGPLAN Notices
33(4), pp. 17-20, 1998.

[ApMa94] ANDREW W. APPEL, AND DAVID B. MACQUEEN. Separate Compilation for
Standard ML. Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’94), Orlando, Florida, USA, ACM, SIG-
PLAN Notices 29(6), June 1994.

[ASF] APACHE SOFTWARE FOUNDATION. The Apache XML Project. Available at xml.
apache.org.

[AsKrKr99] EGIDIO ASTESIANO, HANS-JÖRG KREOWSKI, AND BERND KRIEG-
BRCKNER (EDS.). Algebraic Foundations of System Specification. IFIP State-of-the-Art
Reports, Springer, 1999.

[AtFlIg98] GIUSEPPE ATTARDI, TITO FLAGELLA, AND PIETRO IGLIO. A Customisable
Memory Management Framework for C++. John Wiley & Sons, Ltd, Software – Practice
and Experience, Vol. 28, No. 11, pp. 1143-1183, 1998.

[Aus98] MATTHEW H. AUSTERN. Generic Programming and the STL. Addison-Wesley
Publishing Company, 1998.

[AyJoPe+98] ANDREW AYERS, STUART DE JONG, JOHN PEYTON, AND RICHARD

SCHOOLER. Scalable Cross-Module Optimization. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’98), Mon-
treal, Canada, ACM, SIGPLAN Notices 33(5), May 1998.

[Bak82] THEODORE P. BAKER. A One-Pass Algorithm for Overload resolution in Ada. ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 4, pp. 601-614,
October 1982.

[BaLa94] THOMAS BALL, AND JAMES R. LARUS. Optimally Profiling and Tracing Programs.
ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, July
1994.

[BaLa96] THOMAS BALL, AND JAMES R. LARUS. Efficient Path Profiling. Proceedings of
the 29th Annual IEEE/ACM International Symposium on Microarchitecture, Paris,
France, December 2-4, 1996.

[Bar88] JOEL F. BARTLETT. Compacting Garbage Collection with Ambigous Roots. DEC Re-
search Report 88/2, February 1988.

www.cs.virginia.edu/zephyr

www.cs.virginia.edu/zephyr

xml.apache.org

xml.apache.org

BIBLIOGRAPHY 175

[Bar89] JOEL F. BARTLETT. Mostly-Copying Garbage Collection Picks Up Generations and
C++. DEC Technical Note TN-12, October 1989.

[Bar95] JOHN G. P. BARNES. Programming in Ada95. Addison-Wesley Publishing Com-
pany, 1995.

[BaDiMa97] RONALD BAECKER, CHRIS DIGIANO, AND AARON MARCUS. Software Visu-
alization for Debugging. ACM, Communications of the ACM, Vol. 40, No. 4, pp. 44-54,
April 1997.

[BeSe97] JON LOUIS BENTLEY, AND ROBERT SEDGEWICK. Fast Algorithms for Sorting and
Searching Strings. Proceedings of the Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 360-369, New Orleans, Louisiana, USA, January 1997.

[Boost] BOOST COMMUNITY. Boost C++ Libraries. Available at www.boost.org.

[BöGuPo00] LÁSLÓ BÖSZÖRMÉNYI, JÜRG GUTKNECHT AND GUSTAV POMBERGER (EDI-
TORS). The School of Niklaus Wirth: The Art of Simplicity. Morgan Kaufmann Publishers,
San Fransisco, California, USA, 2000.

[BoDa98] BORIS BOKOWSKI AND MARKUS DAHM. Poor Man’s Genericity for Java. Lecture
Notes in Computer Science, Vol. 1543, Springer, 1998.

[BoJo97] SIMON P. BOOTH, AND SIMON B. JONES. Walk Backwards to Happiness – Debug-
ging by Time Travel. Proceedings of [AADEBUG97], 1997.

[BoWe88] HANS-JUERGEN BOEHM, AND MARK WEISER. Garbage Collection in an Unco-
operative Environment. John Wiley & Sons, Ltd, Software – Practice and Experience,
Vol. 18, No. 9, pp. 807-820, 1988.

[BrRaMe02] PRESTON BRIGGS, JOHN D. RAMSDELL, AND MARC W. MENGEL. Nuweb
Version 1.0b1. A Simple Literate Programming Tool. Available at nuweb.sourceforge.net.

[Bra95] MARC MICHAEL BRANDIS. Optimizing Compilers for Structured Programming Lan-
guages. Ph.D. thesis, Swiss Federal Institute of Technology Zürich, 1995.

[Bra96] GILAD BRACHA. The Strongtalk Type System for Smalltalk. Workshop on Extend-
ing the Smalltalk Language at [OOPSLA96], 1996. Available at java.sun.com/people/
gbracha.

[BrCoKe+01] GILAD BRACHA, NORMAN COHEN, CHRISTIAN KEMPER, STEVE MARX,
MARTIN ODERSKY, SVEN-ERIC PANITZ, DAVID STOUTAMIRE, KRESTEN THORUP,
AND PHILIP WADLER. Adding Generics to the Java Programming Language: Participant
Draft Specification. Sun Microsystems, Inc., 2001. Available at developer.java.sun.com.

[BrGr93] GILAD BRACHA, AND DAVID GRISWOLD. Strongtalk: Typechecking Smalltalk
in a Production Environment. Proceedings of [OOPSLA93], ACM, SIGPLAN Notices
28(10), 1993.

[BrDoGa+00] SHIRLEY BROWNE, JACK DONGARRA, N. GARNER, KEVIN S. LONDON,
AND P. MUCCI. A Scalable Cross-Platform Infrastructure for Application Performance Tun-
ing Using Hardware Counters. Supercomputing 2000, Dallas, Texas, USA, Novem-
ber 4-10, 2000. Electronic proceedings available at www.supercomp.org/sc2000/
Proceedings/start.htm.

www.boost.org

nuweb.sourceforge.net

java.sun.com/people/gbracha

java.sun.com/people/gbracha

developer.java.sun.com

www.supercomp.org/sc2000/Proceedings/start.htm

www.supercomp.org/sc2000/Proceedings/start.htm

176 BIBLIOGRAPHY

[BrSeMu00] ILJA N. BRONSTEIN, KONSTANTIN A. SEMENDJAJEW, AND GERHARD MU-
SIOL. Taschenbuch der Mathematik. 5. Auflage, Verlag Harri Deutsch, Franfurt/Main,
September 2000.

[BrOdSt+98] GILAD BRACHA, MARTIN ODERSKY, DAVID STOUTAMIRE, AND PHILIP

WADLER. Making the future safe for the past: Adding Genericity to the JavaTM Program-
ming Language. Proceedings of [OOPSLA98], ACM, SIGPLAN Notices 33(10), 1998.

[Bru93] KIM B. BRUCE. Safe Type Checking in a Statically-Typed Object-Oriented Program-
ming Language. ACM, Conference Record of [POPL93], 1993.

[BrCaCa+95] KIM B. BRUCE, LUCA CARDELLI, GIUSEPPE CASTAGNA, JONATHAN

EIFRIG, SCOTT F. SMITH, VALERY TRIFONOV, GARY T. LEAVENS, AND BENJAMIN

C. PIERCE. On Binary Methods. Theory and Practice of Object Systems (TAPOS), Vol-
ume 1(3), 1995.

[BrFiSc95] KIM B. BRUCE, ADRIAN FIECH, AND ANGELA SCHUETT. PolyTOIL: A type-
safe polymorphic object-oriented language. Proceedings of ECOOP’95. Lecture Notes in
Computer Science, Vol. 952, Springer, 1998.

[BrOdWa98] KIM B. BRUCE, MARTIN ODERSKY, AND PHILIP WADLER. A Statically Safe
Alternative to Virtual Types. Proceedings of ECOOP’98. Lecture Notes in Computer
Science, Vol. 1445, Springer, 1998.

[Bun95] JØRGEN BUNDGAARD. An ANDF Based Ada 95 Compiler System. Lecture Notes
in Computer Science, Vol. 1031, Springer, 1995.

[CaCoHi+89] PETER S. CANNING, WILLIAM COOK, WALTER L. HILL, WALTER G.
OLTHOFF, AND JOHN C. MITCHELL. F-Bounded Polymorphism for Object-Oriented Pro-
gramming. FPCA ’89, Conference on Functional Programming Languages and Com-
puter Architecture, London, England, September 1989.

[Car97] LUCA CARDELLI. Program fragments, Linking, and Modularization. ACM, Confer-
ence Record of [POPL97], pp. 266-277, 1997.

[CaDoGl+89] LUCA CARDELLI, JAMES DONAHUE, LUCILLE GLASSMAN, MICK JOR-
DAN, BILL KALSOW, AND GREG NELSON. Modula-3 Report (revised). Research Report
SRC-52, Systems Research Center, Digital Equipment Corporation, November 1989.

[CaWe85] LUCA CARDELLI, AND PETER WEGNER. On Understanding Types, Data Abstrac-
tion, and Polymorphism. ACM Computing Surveys, Volume 17(4), pp. 471-522, Decem-
ber 1985.

[CaSt98] ROBERT CARTWRIGHT, AND GUY L. STEELE JR. Compatible Genericity with Run-
time Types for the JavaTM Programming Language. Proceedings of [OOPSLA98], ACM,
SIGPLAN Notices 33(10), 1998.

[CyFeRo+91] RON CYTRON, JEANNE FERRANTE, BARRY K. ROSEN, MARK N. WEG-
MAN, AND F. KENNETH ZADECK. Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph. ACM Transactions on Programming Languages and
Systems, Vol. 13, No. 4, pp. 451-490, 1991.

[Cha98] CRAIG CHAMBERS, AND THE CECIL GROUP. The Cecil Language. Specification and
Rationale. Department of Computer Science and Enginieering, University of Wash-
ington, Seatle, USA, December 1998.

BIBLIOGRAPHY 177

[Che70] C. J. CHENEY. A Nonrecursive List Compacting Algorithm. ACM, Communications
of the ACM, Vol. 13, No. 11, pp. 677-678, November 1970.

[ClLoGi99] MARSHALL CLINE, GREG LOMOW, AND MIKE GIROU. C++ FAQs. Second Edi-
tion. Addison-Wesley Publishing Company, 1999.

[Col60] GEORGE E. COLLINS. A method for overlapping and erasure of lists. ACM, Commu-
nications of the ACM, Vol. 3, No. 12, pp. 655-657, 1960.

[CoLo90] GEORGE E. COLLINS, AND RÜDIGER G. K. LOOS. Specifications and Index of
SAC-2 Algorithms. Technical Report WSI 90-4, Wilhelm-Schickard-Institut für Infor-
matik, Universität Tübingen, 1990.

[Con58] MELVIN E. CONWAY. Proposal for an UNCOL. ACM, Communications of the
ACM, Vol. 1, No. 10, pp. 5-8, October 1958.

[Cur95] I. F. CURRIE. TDF Specification, Issue 4.0. Technical report, Defense Research
Agency, Worcestershire, United Kingdom, 1995. Available at www.tendra.org.

[CzEi00] KRZYSZTOF CZARNECKI, AND ULRICH W. EISENECKER. Generative Program-
ming. Methods, Tools, and Applications. Addison-Wesley Publishing Company, 2000.

[DaGrLi+95] MARK DAY, ROBERT GRUBER, BARBARA LISKOV, AND ANDREW C. MY-
ERS. Subtypes vs. Where Clauses: Constraining Parametric Polymorphism. Proceedings of
[OOPSLA95], ACM, SIGPLAN Notices 30(10), 1995.

[DOM00] ARNAUD LE HORS, PHILIPPE LE HGARET, LAUREN WOOD, GAVIN NICOL,
JONATHAN ROBIE, MIKE CHAMPION, AND STEVE BYRNE. Document Object Model
(DOM) Level 2 Core Specification. Version 1.0. W3C Recommendation, November 2000.
Available at [W3Tr].

[DOMT00] ARNAUD LE HORS, PHILIPPE LE HÉGARET, LAUREN WOOD, GAVIN NICOL,
JONATHAN ROBIE, MIKE CHAMPION, AND STEVE BYRNE. Document Object Model
(DOM) Level 2 Traversal and Range Specification. Version 1.0. W3C Recommendation,
November 2000. Available at [W3Tr].

[DuCoIa+97] ANDREW DUNCAN, BOGDAN COCOSEL, COSTIN IANCU, HOLGER

KIENLE, RADU RUGINA, URS HÖLZLE, AND MARTIN RINARD. SUIF: SUIF 2.0 With
Objects. Second SUIF Compiler Workshop, Stanford University, USA 1997. Available
at suif.stanford.edu/suifconf/suifconf2.

[ECMA01] ECMA. Common Language Infrastructure (CLI). Partitions I to IV. Standard
ECMA-335, December 2001. Available at www.ecma.ch.

[ECOOP98] 12. European Conference on Object-Oriented Programming (ECOOP’98). Brus-
sels, Belgium, 1998.

[Edi00] EDISON DESIGN GROUP, INC. C++ Front End. Internal Documentation. Edison De-
sign Group, Inc., New Jersey, USA, December 2000. Available at www.edg.com/cpp.
html.

[EiSmTr95] JONATHAN EIFRIG, SCOTT F. SMITH, AND VALERY TRIFONOV. Sound Poly-
morphic Type Inference for Objects. Proceedings of [OOPSLA95], ACM, SIGPLAN No-
tices 30(10), 1995.

www.tendra.org

suif.stanford.edu/suifconf/suifconf2

www.ecma.ch

www.edg.com/cpp.html

www.edg.com/cpp.html

178 BIBLIOGRAPHY

[Eis97] MARC EISENSTADT. “My Hairiest Bug” War Stories. ACM, Communications of the
ACM, Vol. 40, No. 4, pp. 30-37, April 1997.

[Elm97] KIM ELMS. Debugging Optimised Code Using Function Interpretation. Proceedings
of [AADEBUG97], 1997.

[Els99] MARTIN ELSMAN. Static Interpretation of Modules. Proceedings of the fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP’99), Paris,
France, ACM, SIGPLAN Notices 34(9), September 1999.

[Eng96] DAWSON R. ENGLER. VCODE: A Retargetable, Extensible, Very Fast Dynamic Code
Generation System, Proceedings of the ACM SIGPLAN ’96 Conference on Program-
ming Language Design and Implementation (PLDI’96), Philadephia, Pennsylvania,
USA, ACM SIGPLAN Notices 31(5), May 1996.

[ErKo96] ULFAR ERLINGSSON, AND ALEXANDER V. KONSTANTINOU. Implementing the
C++ Standard Template Library in Ada 95. Techincal Report TR96-3, Rensselaer Poly-
technic Institute, Troy, January 1996.

[Eve97] MARK EVERED. Unconstraining Genericity. Proceedings of Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS Asia’97), Beijing, China,
1997.

[EvKeMe+97] MARK EVERED, JAMES L. KEEDY, GISELA MENGER, AND AXEL

SCHMOLITZKY. Genja – A New Proposal for Parameterised Types in Java. Proceedings
of Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific’97), Melbourne, Australia, 1997.

[FaFeRo97] CHRISTIAN FABRE, FRANCOIS DE FERRIERE, AND FRED ROY. Java-ANDF
Feasibility Study. Final Report. Open Software Foundation Reseach Institute, 1997.

[Fra94] MICHAEL FRANZ. Code-Generation On-the-Fly: A Key to Portable Software. Doctoral
Dissertation, Verlag der Fachvereine, Zürich, 1994.

[FrKi96] MICHAEL FRANZ, AND THOMAS KISTLER. Slim Binaries. Department of Infor-
mation and Computer Science, Technical Report TR 96-24, University of California,
Irvine, 1996.

[GaHeJo+95] ERICH GAMMA, RICHARD HELM, RALPH JOHNSON, AND JOHN VLIS-
SIDES. Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, 1995.

[Gas99] HOLGER GAST. Considerations on Genericity for Programming Language Design.
Technical Report WSI 99-5, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 1999.

[Gas01] HOLGER GAST. Generic Programming with Views: Type- and Class-Inference with
Polymorphic Subsumption by Resolution Theorem Proving. Technical Report WSI 2001-
17, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 2001.

[GeLe] LAL GEORGE, AND ALLEN LEUNG. MLRISC – A framework for retargetable and op-
timizing compiler back ends. Available at www.cs.nyu.edu/leunga/www/MLRISC/Doc/
html/index.html.

www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html

www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html

BIBLIOGRAPHY 179

[GlMo99] NEAL GLEW, AND GREG MORRISETT. Type-Safe Linking and Modular Assembly
Language. ACM, Conference Record of [POPL94], pp. 250-261, 1994.

[Gog96] JOSEPH GOGUEN. Parameterized Programming and Software Architecture. Fourth
International Conference on Software Reuse, IEEE Computer Society, April 1996.

[GoJoSt+00] JAMES GOSLING, BILL JOY, GUY STEELE, AND GILAD BRACHA. The JavaTM

Programming Language. Second Edition. Addison-Wesley Publishing Company, 2000.
Available at java.sun.com/docs/books/jls/index.html.

[Gou97] K. JOHN GOUGH. Multi-language, Multi-target Compiler Development: Evolution
of the Gardens Point Compiler Project. Proceedings of the Joint Modula Languages Con-
ference, Linz, Austria, March 1997. In Lecture Notes in Computer Science, Vol. 1204,
Springer, 1997.

[Gou97b] JOHN GOUGH. The DCode Intermediate Representation: Reference Manual and Re-
port. Revision 3.2, November 1997. Available at sky.fit.qut.edu.au/∼gough.

[GoCo00] K. JOHN GOUGH, AND DIANE CORNEY. Evaluating the Java Virtual Machine as
a target for Languages Other than Java. Joint Modula Languages Conference, Zürich,
Switzerland, September 2000.

[Gou00] K. JOHN GOUGH. Parameter Passing for the Java Virtual Machine. 23rd Australian
Computer Science Conference, ACSC-2000, Canberra, February 2000.

[Gou01] K. JOHN GOUGH. Stacking them up: a Comparison of Virtual Machines. Proceed-
ings of Australian Computer Systems and Architecture Conference, ACSAC-2001,
Gold Coast, Australia, February 2001.

[Gra02] TORBJÖRN GRANLUND. GNU MP – The GNU Multiple Precision Arithmetic Li-
brary, Edition 4.0.1, Free Software Foundation, 2002. Available at swox.com/gmp/.

[GrMoPh+00] BRIAN GRANT, MARKUS MOCK, MATTHAI PHILIPOSE, CRAIG CHAM-
BERS, AND SUSAN J. EGGERS. DyC: An Expressive Annotation-Directed Dynamic Com-
piler for C. Theoretical Computer Science, Volume 248(1-2), pp. 147-199, October 2000.

[GrHaKi+01] TODD L. GRAVES, MARY JEAN HARROLD, JUNG-MIN KIM, ADAM

PORTER, AND GREGG ROTHERMEL. An Empirical Study of Regression Test Selection
Techniques. ACM Transactions on Software Engineering and Methodology (TOSEM),
Vol. 10, Issue 2, April 2001.

[Gri99] ROBERT GRIESEMER. Generation of Virtual Machine Code at Startup. Virtual Ma-
chine Workshop at [OOPSLA99], 1999.

[GrBaJa+00] DICK GRUNE, HENRI E. BAL, CERIEL J. H. JACOBS, AND KOEN G. LAN-
GENDOEN. Modern Compiler Design. John Wiley & Sons, Ltd, 2000.

[GrMi00] ROBERT GRIESEMER, AND SRDJAN MITROVIC. A Compiler for the JavaTM

HotSpot Virtual Machine. pp. 133-152 in [BöGuPo00], 2000.

[Gro97] THOMAS GROSS. Bisection Debugging. Proceedings of [AADEBUG97], 1997.

[Gur00] YURI GUREVICH. Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic, vol. 1, no. 1, July 2000, 77-111.

java.sun.com/docs/books/jls/index.html

sky.fit.qut.edu.au/~gough

swox.com/gmp/

180 BIBLIOGRAPHY

[Hal01] THOMAS HALLGREN. Fun with Functional Dependencies. Proceedings of the Joint
CS/CE Winter Meeting, Varberg, Sweden, January 2001.

[Han99] DAVID R. HANSON. Early Experience with ASDL in lcc. John Wiley & Sons, Ltd,
Software – Practice and Experience, Vol. 29, No. 5, pp. 417-435, 1999.

[Heu00] HARRO HEUSER. Lehrbuch der Analysis. Teil 2. 11. Aufl., B.G. Teubner Verlag,
2000.

[HePa96] JOHN L. HENNESSY, AND DAVID A. PATTERSON. Computer Architecture. A
Quantitative Approach. Second Edition. Morgan Kauffmann Publishers, Inc., 1996.

[HoNeSc95] HOON HONG, ANDREAS NEUBACHER, AND WOLFGANG SCHREINER. The
Design of the SACLIB/PACLIB Kernels. Journal of Symbolic Computation 19(1-3): 111-
132, Academic Press, London, 1995.

[HTML99] DAVE RAGGETT, ARNAUD LE HORS, AND IAN JACOBS (EDITORS). HTML
4.01 Specification. W3C Recommendation, December 1999. Available at www.w3.org/
TR.

[Int99] INTEL CORPORATION. Intel Architecture Software Developer’s Manual, Volume 2: In-
struction Set Reference. Order Number 243191, Intel Corporation, 1999.

[ISO14882] JTC1/SC22 – PROGRAMMING LANGUAGES, THEIR ENVIRONMENT AND

SYSTEM SOFTWARE INTERFACES. Programming Languages – C++. International Orga-
nization for Standardization, ISO/IEC 14882, 1998.

[ISO11404] JTC1/SC22/WG11 – BINDING TECHNIQUES. Language-independent
datatypes. International Organization for Standardization, ISO/IEC 11404:1996, 1996.

[Jah00] ERWAN JAHIER. Collecting Graphical Abstract Views of Mercury Program Executions.
Proceedings of [AADEBUG00], 2000.

[JäHaGe99] BERND JÄHNE, HORST HAUSSECKER, AND PETER GEISSLER. Handbook on
Computer Vision and Applications. Volume 3, Academic Press, 1999.

[Jär01] JAAKKO JÄRVI. Tuple Types and Multiple Return Values. C/C++ Users Journal, Au-
gust 2001.

[JaLoMu98] MEHDI JAZAYERI, RÜDIGER G. K. LOOS, AND DAVID R. MUSSER (ED-
ITORS). Generic Programming. International Seminar on Generic Programming,
Dagstuhl Castle, Germany, April/May 1998, Lecture Notes in Computer Science, Vol.
1766, Springer, 1998.

[JoLi96] RICHARD JONES, AND RAFAEL LINS. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, Ltd, 1996.

[JoHu98] SIMON PEYTON JONES, AND JOHN HUGHES (EDS.). Haskell 98: A Non-strict,
Purely Functional Language. Language Report, 1998. Available at www.haskell.org.

[JoJoMe97] SIMON PEYTON JONES, MARK JONES, AND ERIK MEIJER. Type classes: Ex-
ploring the Design Space. Proc. of ACM SIGPLAN Haskell Workshop, June 1997.

[JoRaRe99] SIMON PEYTON JONES, NORMAN RAMSEY, AND FERMIN REIG. C--: a
portable assembly language that supports garbage collection. Lecture Notes in Computer
Science, Vol. 1702, Springer, 1999.

www.w3.org/TR

www.w3.org/TR

www.haskell.org

BIBLIOGRAPHY 181

[KaMu92] DEEPAK KAPUR, AND DAVID R. MUSSER. Tecton: a framework for specifying and
verifying generic system components. Computer Science Technical Report 92-20, Rens-
selaer Polytechnic Institute, July, 1992.

[KeClRe98] RICHARD KELSEY, WILLIAM CLINGER, AND JONATHAN REES (EDS.).
Revised5 Report on the Algorithmic Language Scheme. ACM, SIGPLAN Notices 33(9),
1998.

[KeSy01] ANDREW KENNEDY, AND DON SYME. Design and Implementation of Generics for
the .NET Common Language Runtime. Proceedings of the 2001 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), Snowbird,
Utah, USA, ACM, SIGPLAN Notices 36(5), May 2001.

[KiHö97] HOLGER KIENLE, AND URS HÖLZLE. Introduction to the SUIF 2.0 Compiler Sys-
tem. Technical Report TRCS97-22, University of California, December 1997.

[KiFr99] THOMAS KISTLER, AND MICHAEL FRANZ. A Tree-Based Alternative to Java Byte-
Codes. International Journal of Parallel Programming, Vol. 27, No. 1, pp. 21-33, 1999.

[Kis99] THOMAS KISTLER. Continuous Program Optimization. Ph.D. thesis, University of
California, Irvine, 1999.

[Kla83] HERBERT KLAEREN. Algebraische Spezifikation - Eine Einführung. Springer, 1983.

[Köt99] ULLRICH KÖTHE. Reusable Software in Computer Vision. Chapter 6 in [JäHaGe99],
1999.

[Köt00] ULLRICH KÖTHE. STL-Style Generic Programming with Images. SIGS Publications,
C++ Report, Vol. 12(1), January 2000.

[Kre02] ADRIAN U. KREPPEL. Algorithm Selection Based On Empirical Data. Ph.D. thesis,
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 2002.

[KüWe97] DIETMAR KÜHL, AND KARSTEN WEIHE. Data Access Templates. SIGS Publica-
tions, C++ Report, Vol. 9(7), July/August 1997.

[Lan64] CORNELIUS LANCZOS. A Precission Approximation of the Gamma Function. SIAM
Journal of Numerical Analysis, Vol. 1, pp. 86-96, 1964.

[Len00] RAIMONDAS LENCEVICIUS. On-the-fly Query-Based Debugging with Examples.
Proceedings of [AADEBUG00], 2000.

[Ler94] XAVIER LEROY. Manifest Types, Modules, and Separate Compilation. ACM, Confer-
ence Record of [POPL94], 1994.

[Ler97] XAVIER LEROY. The effectiveness of type-based unboxing. Workshop ”Types in Com-
pilation”, Amsterdam, June 1997.

[Ler98] XAVIER LEROY. An overview of Types in Compilation. Proceedings of Workshop
”Types in Compilation”, Lecture Notes in Computer Science, Vol. 1743, Springer,
1998.

[LeDeGo95] BRIAN T. LEWIS, L. PETER DEUTSCH, AND THEODORE C. GOLDSTEIN.
Clarity MCode: A Retargetable Intermediate Representation for Compilation. Technical Re-
port SMLI TR-95-43, Sun Microsystems Laboratories, Inc., 1995.

182 BIBLIOGRAPHY

[Lip96] STANLEY B. LIPPMAN. Indide the C++ Object Model. Addison-Wesley Publishing
Company, 1996.

[LiLa98] STANLEY B. LIPPMAN, AND JOSÉE LAJOIE. C++ Primer. Third Edition. Addison-
Wesley Publishing Company, 1998.

[Lis92] BARBARA LISKOV. A History of CLU. Technical Report TR-561, Massachusetts In-
stitute of Technology, Cambridge, 1992.

[LiCuDa+95] BARBARA LISKOV, DOROTHY CURTIS, MARK DAY, SANJAY GHEMAWAT,
ROBERT GRUBER, PAUL JOHNSON, AND ANDREW C. MYERS. Theta Reference Manual.
Programming Methodology Group Memo 88, MIT Laboratory for Computer Science,
Cambridge, Massachusetts, USA, February 1995.

[Lit98] VASSILIY LITVINOV. Constraint-Based Polymorphism in Cecil: Towards a Practical and
Static Type System. In [OOPSLA98], 1998.

[LoCo92] RÜDIGER G. K. LOOS, AND GEORGE E. COLLINS. Revised Report on the Algo-
rithm Description Language ALDES, Technical Report WSI 92-14, Wilhelm-Schickard-
Institut für Informatik, Universität Tübingen, 1992.

[LiYe99] TIM LINDHOLM, AND FRANK YELLIN. The JavaT M Virtual Machine Specification,
Second Edition. Addison-Wesley Publishing Company, 1999.

[Mac93] STAVROS MACRAKIS. From UNCOL to ANDF: Progress in Standard Intermediate
Languages. Open Software Foundation, Inc., 1993.

[MiToHa+97] ROBIN MILNER, MADS TOFTE, ROBERT HARPER, AND DAVID MAC-
QUEEN. The Definition of Standard ML - Revised. MIT Press, May 1997.

[MeGo01] ERIK MEIJER, AND JOHN GOUGH. Technical Overview of the Common Language
Runtime. Available at research.microsoft.com/∼emeijer/, 2001.

[Mey92] BETRAND MEYER. Eiffel: The Language. Prentice Hall, New York, 1992.

[Mey01] SCOTT MEYERS. Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library. Addison-Wesley Publishing Company, 2001.

[Mor97] ROBERT MORGAN. Building an Optimizing Compiler. Digital Press, Butterworth-
Heinemann, 1997.

[MoCrGl+99] GREG MORRISETT, KARL CRARY, NEAL GLEW, DAN GROSSMAN,
RICHARD SAMUELS, FREDERICK SMITH, DAVID WALKER, STEPHANIE WEIRICH,
AND STEVE ZDANCEWIC. TALx86: A Realistic Typed Assembly Language. ACM SIG-
PLAN, Second Workshop on Compiler Support for System Software, Atlanta, May
1999.

[MoWaCr+98] GREG MORRISETT, DAVID WALKER, KARL CRARY, AND NEAL GLEW.
From System F to Typed Assembly Language. ACM, Conference Record of [POPL98],
1998.

[Mos89] STEPHEN L. MOSHIER. Methods and Programs for Mathematical Functions. Pren-
tice Hall, New York, 1989.

research.microsoft.com/~emeijer/

BIBLIOGRAPHY 183

[Mös00] HANSPETER MÖSSENBÖCK. Compiler Construction: The Art of Niklaus Wirth. pp.
55-68 in [BöGuPo00], 2000.

[Muc97] STEVEN S. MUCHNICK. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Fransisco, California, USA, 1997.

[MuDeSa01] DAVID R. MUSSER, GILLMER J. DERGE, AND ATUL SAINI. STL Tutorial and
Reference Guide, Second Edition. Addison-Wesley Publishing Company, 2001.

[Mus97] DAVID R. MUSSER. Introspective Sorting and Selection Algorithms, John Wiley &
Sons, Ltd, Software – Practice and Experience, Vol. 27, No. 8, pp. 983-993, 1997.

[Mus98] DAVID R. MUSSER. The Tecton Concept Description Language. Wilhelm-Schickard-
Institut für Informatik, Universität Tübingen, 1998.

[MuScLo98] DAVID R. MUSSER, SIBYLLE SCHUPP, AND RÜDIGER LOOS. Requirement
Oriented Programming. pp. 12-24 in [JaLoMu98], 1998.

[MuScSc+99] DAVID R. MUSSER, SIBYLLE SCHUPP, CHRISTOPH SCHWARZWELLER, AND

RÜDIGER LOOS. The Tecton Concept Library. Technical Report WSI 99-2, Wilhelm-
Schickard-Institut für Informatik, Universität Tübingen, 1999.

[MyBaLi97] ANDREW C. MYERS, JOSEPH A. BANK, AND BARBARA LISKOV. Parametized
Types for Java. ACM, Conference Record of [POPL97], 1997.

[Nel79] PHILIP A. NELSON. A Comparison of PASCAL Intermediate Languages. Proceedings
of the ACM SIGPLAN SIGPLAN Symposium on Compiler Construction, SIGPLAN
Notices 14(8), pp. 208-213, August 1979.

[NiSc01] GOR V. NISHANOV, AND SIBYLLE SCHUPP. A mostly-copying collector component
for class templates. John Wiley & Sons, Ltd, Software – Practice and Experience, Vol.
31, No. 5, pp. 445-470, May 2001.

[NoAmJe+76] KESAV NORI, URS AMMANN, K. JENSEN, H. NÄGELI, AND CHRISTIAN

JACOBI. The PASCAL (P) Compiler: Implementation Notes. Technical Report 10, revised
edition, ETH Zürich, Switzerland, 1976.

[OdWa97] MARTIN ODERSKY, AND PHILIP WADLER. Pizza into Java: Translating theory
into practice. ACM, Conference Record of [POPL97], pp. 146-159, 1997.

[OOPSLA93] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’97). Washington, DC, USA, October 1993.

[OOPSLA95] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’95). Austin, Texas, USA, October 1995.

[OOPSLA96] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’96). San Jose, California, USA, October 1996.

[OOPSLA97] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’97). Atlanta, Georgia, USA, October 1997.

[OOPSLA98] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’93). Vancouver, British Columbia, Canada, October
1998.

184 BIBLIOGRAPHY

[OOPSLA99] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’99). Denver, Colorado, USA, October 1999.

[OOPSLA00] ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA 2000). Minneapolis, Minnesota, USA, October 2000.

[PCL] PCL - The Performance Counter Library. Version 2.1, February 2002. Available at
www.fz-juelich.de/zam/PCL.

[PeSi79] DANIEL L. PERKINS, AND RICHARD L. SITES. Machine-Independent Pascal Code
Optimization. Proceedings of the ACM SIGPLAN SIGPLAN Symposium on Compiler
Construction, SIGPLAN Notices 14(8), pp. 201-207, August 1979.

[PeMe01] NIGEL PERRY, AND ERIK MEIJER. Implementing Functional Languages on Object-
Oriented Virtual Machines. Technical Report, Microsoft Research, 2001. Available at
research.microsoft.com/∼emeijer.

[PhChEg02] MATTHAI PHILIPOSE, CRAIG CHAMBERS, AND SUSAN J. EGGERS. Towards
automatic construction of staged compilers. ACM, Conference Record of [POPL02], pp.
113-125, 2002.

[PoHsEn+99] MASSIMILIANO POLETTO, WILSON C. HSIEH, DAWSON R. ENGLER, AND

M. FRANS KAASHOEK. ’C and tcc: A Language and Compiler for Dynamic Code Gener-
ation. ACM, Transactions on Programming Languages and Systems (TOPLAS) 21(2),
pp. 324-369, 1999.

[POPL93] The 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’93). Charleston, South Carolina, USA, January 1993.

[POPL94] The 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’94). Portland, Oregon, January 1994.

[POPL97] The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’97). Paris, France, January 1997.

[POPL98] The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’98). San Diego, CA, USA, January 1998.

[POPL99] The 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’99). San Antonio, TX, USA, January 1999.

[POPL02] The 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’02). Portland, Washington, USA, January 2002.

[RaTeLe+91] RAJENDRA K. RAJ, EWAN D. TEMPERO, HENRY M. LEVY, ANDREW P.
BLACK, NORMAN C. HUTCHINSON, AND ERIC JUL. Emerald: A General-Purpose Pro-
gramming Language. John Wiley & Sons, Ltd, Software – Practice and Experience, Vol.
21, No. 1, pp. 91-118, 1991.

[RaJo00] NORMAN RAMSEY, AND SIMON L. PEYTON JONES. A single intermediate lan-
guage that supports multiple implementations of exceptions. Proceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Vancouver, Britith Columbia, Canada, ACM, SIGPLAN Notices, 35(5), May
2000.

www.fz-juelich.de/zam/PCL

research.microsoft.com/~emeijer

BIBLIOGRAPHY 185

[Ric00] JEFFREY RICHTER. Garbage Collection: Automatic Memory Management in the Mi-
crosoft .NET Framework. MSDN Magazine, Novermber 2000.

[RoSz97] PAUL ROE, AND CLEMENS SZYPERSKI. Lightweight Parametric Polymorphism for
Oberon. Proceedings of Joint Modular Languages Conference (JMLC’97), Linz, Aus-
tria, 1997.

[SaOd90] VATSA SANTHANAM, AND DARYL ODNERT. Register Allocation Across Proce-
dure and Module Boundaries. Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation, White Plains, New York, USA,
ACM, SIGPLAN Notices 25(6), June 1990.

[SAX] The Official SAX Homepage. Available at www.saxproject.org.

[Sch96] SIBYLLE SCHUPP. Generic programming — SuchThat one can build an algebraic li-
brary. Ph.D. thesis, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
1996.

[Sch89] JERRY SCHWARZ. Initializing Static Variables in C++ Libraries. SIGS Publications,
C++ Report, Vol. 1(2), February 1989.

[Sch97] CHRISTOPH SCHWARZWELLER. Mizar Verification of Generic Algebraic Algorithms.
Ph.D. thesis, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 1997.

[ScLo98] SIBYLLE SCHUPP, AND RÜDIGER LOOS. SuchThat — Generic Programming
Works. pp. 133-145 in [JaLoMu98], 1998.

[Sed98] ROBERT SEDGEWICK. Algorithms in C++, Parts 1-4: Fundamentals, Data Structure,
Sorting, Searching. Addison-Wesley Publishing Company, 3rd Edition, 1998.

[SiLeLu01] JEREMY G. SIEK, LIE-QUAN LEE, AND ANDREW LUMSDAINE. The Boost
Graph Library. User Guide and Reference Manual. Addison-Wesley Publishing Com-
pany, 2001.

[SiLu98a] JEREMY G. SIEK, AND ANDREW LUMSDAINE. The Matrix Template Library:
A Unifying Framework for Numerical Linear Algebra. Workshop on Parallel Object-
Oriented Scientific Computing at [ECOOP98], 1998.

[SiLu98b] JEREMY G. SIEK, AND ANDREW LUMSDAINE. A Rational Approach to Portable
High Performance: The Basic Linear Algebra Instruction Set (BLAIS) and the Fixed Algo-
rithm Size Template (FAST) Library. Workshop on Parallel Object-Oriented Scientific
Computing at [ECOOP98], 1998.

[SiLu98c] JEREMY G. SIEK, AND ANDREW LUMSDAINE. The Matrix Template Library: A
Generic Programming Approach to High Performance Numerical Linear Algebra. Second
International Symposium on Computing in Object-Oriented Parallel Environments
(ISCOPE 98), Santa Fé, NM, USA, December 1998.

[SiLu99] JEREMY G. SIEK, AND ANDREW LUMSDAINE. The Matrix Template Library:
Generic Components for High-Performance Scientific Computing. IEEE Computer Society,
Computing in Science & Engineering, 1999.

[SiLu00] JEREMY G. SIEK, AND ANDREW LUMSDAINE. Concept Checking: Binding Para-
metric Polymorphism in C++. Workshop on C++ Template Programming, Erfurt, Ger-
many, October 2000.

www.saxproject.org

186 BIBLIOGRAPHY

[SiWe99] VOLKER SIMONIS, AND ROLAND WEISS. Heterogeneous, Nested STL Containers
in C++. Andrei Ershov Third International Conference: Perspectives of System Infor-
matics, Novosibirsk, Russia, July 1999. Lecture Notes in Computer Science, Vol. 1755,
Springer, 1999.

[Sim02] VOLKER SIMONIS. ProgDoc – A Program Documentation System. Available at www.
progdoc.org.

[ShAp93] ZHONG SHAO, AND ANDREW W. APPEL. Smartest Recompilation. ACM, Con-
ference Record of [POPL93], 1993.

[SMLNJ] LUCENT TECHNOLOGIES, BELL LABORATORIES. Standard ML of New Jersey.
Available at cm.bell-labs.com/cm/cs/what/smlnj/index.html.

[SoAl98] JOSE H. SOLORZANO, AND SUAD ALAGIC. Parametric Polymorphism for Java: A
Reflective Solution. Proceedings of [OOPSLA98], ACM, SIGPLAN Notices 33(10), 1998.

[Spo94] JOHN L. SPOUGE. Computation of the Gamma, Digamma, and Trigamma Functions.
SIAM Journal of Numerical Analysis, Vol. 31, No. 3, pp. 931-944, 1994.

[SrWa92] AMITABH SRIVASTAVA, AND DAVID W. WALL. A Practical System for Inter-
module Code Optimization at Link-Time. Western Research Laboratory (WRL), Digital
Equipment Corporation, Research Report 92/6, December 1992.

[Sta01] RICHARD M. STALLMAN. Using and Porting the GNU Compiler Collection. For GCC
Version 3.0. Free Software Foundation, Inc., Boston, MA, USA, 2001.

[StLe95] ALEXANDER STEPANOV, AND MENG LEE. The Standard Template Library. Tech-
nical Report HPL-95-11, Hewlett-Packard Laboratories, November 1995.

[Str67] CHRISTOPHER STRACHEY. Fundamental Concepts in Programming Languages. Lec-
ture notes for the International Summer School in Computer Programming, Copen-
hagen, Denmark, 1967. Reprinted in Higher-Order and Symbolic Computation, Vol-
ume 13, Number 1-2, April 2000.

[Str97] BJARNE STROUSTRUP. The C++ Programming Language, 3rd Edition. Addison-
Wesley Publishing Company, 1997.

[Sut01] HERB SUTTER. Virtuality. C/C++ Users Journal, 19(9), July 2001.

[Tho97] KRESTEN KRAB THORUP. Genericity in Java with Virtual Types. Lecture Notes in
Computer Science, Vol. 1241, Springer, 1997.

[ThTo99] KRESTEN KRAB THORUP, AND MADS TORGERSEN. Unifiying Genericity – Com-
bining the Benefits of Virtual Types and Parameterized Classes. Lecture Notes in Computer
Science, Vol. 1628, Springer, 1999.

[Tol02] ROBERT TOLKSDORF. Programming Languages for the Java Virtual Machine. Avail-
able at grunge.cs.tu-berlin.de/∼tolk/vmlanguages.html.

[Uni00] THE UNICODE CONSORTIUM. The Unicode Standard, Version 3.0. Addison-Wesley
Publishing Company, 2000.

[ViNa00] MIRKO VIROLI, AND ANTONIO NATALI. Parametric Polymorphism in Java: an
Approach to Translation Based on Reflective Features. ACM, SIGPLAN Notices 35(10),
Proceedings of [OOPSLA00], 2000.

www.progdoc.org

www.progdoc.org

cm.bell-labs.com/cm/cs/what/smlnj/index.html

grunge.cs.tu-berlin.de/~tolk/vmlanguages.html

BIBLIOGRAPHY 187

[Vir00] MIRKO VIROLI. On the recursive generation of parametric types. Technical Report
DEIS-LIA-00-002, Università degli Studi di Bologna, 2000.

[Vir01] MIRKO VIROLI. Parametric Polymorphism in Java: an Efficient Implementation for
Parametric Methods. Proceedings of the 2001 ACM Symposium on Applied Comput-
ing (SAC), Las Vegas, NV, USA, March 2001.

[Vir02] MIRKO VIROLI. A Lazy Type-Passing Approach for the Translation of Generics in Java.
Unpublished draft, 2002. Available a www.ingce.unibo.it/∼mviroli/LM/index.htm.

[W3Tr] WORLD WIDE WEB CONSORTIUM. W3C Technical Reports and Publications. Avail-
able at www.w3.org/TR.

[Wal86] DAVID W. WALL. Global Register Allocation at Link Time. Western Research Labo-
ratory (WRL), Digital Equipment Corporation, Research Report 86/3, 1986.

[Wal89] DAVID W. WALL. Link-Time Code Modification. Western Research Laboratory
(WRL), Digital Equipment Corporation, Research Report 89/17, September 1989.

[Wal90] DAVID W. WALL. Predicting Program Behavior Using Real or Estimated Profiles.
Western Research Laboratory (WRL), Digital Equipment Corporation, Technical Note
TN-18, December 1990.

[WaPo87] DAVID W. WALL, AND MICHAEL L. POWELL. The Mahler Experience: Using an
Intermediate Language as the Machine Description. Western Research Laboratory (WRL),
Digital Equipment Corporation, Research Report 87/1, 1987.

[WaApKo+97] DANIEL C. WANG, ANDREW W. APPEL, JEFF L. KORN, AND CHRISTO-
PHER S. SERRA. The Zephyr Abstract Syntax Description Language. Conference on
Domain-Specific Languages (DSL), Santa Barbara, California, USA, October 1997.

[Wed96] SEBASTIAN WEDENIWSKI. Piologie – Eine exakte arithmetische Bibliothek in C++ ,
Technical Report WSI 96-35, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 1996.

[WeSi01] ROLAND WEISS, AND VOLKER SIMONIS. Exploring Template Template Parame-
ters. Andrei Ershov Fourth International Conference: Perspectives of System Infor-
matics, Novosibirsk, Russia, July 2001. Lecture Notes in Computer Science, Vol. 2244,
Springer, 2001.

[Wei97] ROLAND WEISS. ScmToCpp: a configureable, intelligent back end for SUCHTHAT.
Technical Report WSI 97-13, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 1997.

[Win01] EMILY WINCH. Heterogenous Lists of Named Objects. Second Workshop on C++
Template Programming, Tampa Bay, Florida, USA, October 2001.

[WoAgUn99] MARIO WOLCZKO, OLE AGESEN, AND DAVID UNGAR. Towards a Univer-
sal Implementation Substrate for Object-Oriented Languages. Virtual Machine Workshop
at [OOPSLA99], 1999.

[XML00] TIM BRAY, JEAN PAOLI, C. M. SPERBERG-MCQUEEN, AND EVE MALER (EDI-
TORS). Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation,
W3C XML Activity, October 2000. Available at [W3Tr].

www.ingce.unibo.it/~mviroli/LM/index.htm

www.w3.org/TR

188 BIBLIOGRAPHY

[XMLA] WORLD WIDE WEB CONSORTIUM. Extensible Markup Language (XML) Activity
Statement. Available at www.w3.org/XML/Activity.

[XMLL98] EVE MALER, AND STEVE DEROSE (EDITORS). XML Linking Language (XLink).
W3C Working Draft, W3C XML Activity, March 1998. Available at [W3Tr].

[XMLN99] TIM BRAY, DAVE HOLLANDER, AND ANDREW LAYMAN. Namespaces in XML.
World Wide Web Consortium, January 1999. Available at [W3Tr].

[XMLP98] EVE MALER, AND STEVE DEROSE (EDITORS). XML Pointer Language
(XPointer). W3C Working Draft, W3C XML Activity, March 1998. Available at [W3Tr].

[XMLSD01] PAUL V. BIRON, AND ASHOK MALHOTRA (EDITORS). XML Schema Part 2:
Datatypes. W3C Recommendation, May 2001. Available at [W3Tr].

[XMLSP01] DAVID C. FALLSIDE (EDITOR). XML Schema Part 0: Primer. W3C Recommen-
dation, May 2001. Available at [W3Tr].

[XMLSS01] HENRY S. THOMPSON, DAVID BEECH, MURRAY MALONEY, AND NOAH

MENDELSOHN (EDITORS). XML Schema Part 1: Structures. W3C Recommendation,
May 2001. Available at [W3Tr].

[Zol01] LEOR ZOLMAN. An STL Error Message Decryptor for Visual C++. C/C++ Users
Journal, July 2001.

www.w3.org/XML/Activity

Acknowledgements

Foremost, I want to thank Rüdiger Loos for his patient supervision of my work and all
his stimulating suggestions and thoughts. Just as much I would like to express my great
appreciation for the support of my colleagues Holger Gast, Albrecht Haug, Uwe Kreppel,
Christoph Schwarzweller, and Volker Simonis. Christoph provided insights on specifica-
tion and verification, Holger on type theory, and Uwe on algorithm selection. Furthermo-
re, we had countless discussions on all aspects of generic programming. Volker always
extended his ProgDOC system immediately in order to meet my particular demands.

		Contents

		Introduction

		Motivation

		Contribution

		Overview

		From Concepts to Machine Code

		Generic Programming

		Exploring Genericity with the Factorial and Gamma Function

		Mathematical Background

		Genericity

		Algebraic Specification in SuchThat with Tecton

		Integrating Specification and Implementation

		Generating Code for Generic Algorithms

		The Instantiation Process

		Overview of a Traditional Compilation System

		Incorporating Instantiation into the Compilation Process

		Easing the Tension

		Summary

		The GILF Compilation System

		Rationale for the Intermediate Representation

		Abstraction Level

		Structure

		Encoding

		Infrastructure of a GILF System

		Front-Ends

		Code-Generating Linker and Loader

		Native Code Cache

		Runtime System

		Optimization System

		Summary

		The Annotated XGILF Specification

		A Concise Summary of XML

		Elements, Attributes, and Text

		Entities, Well-Formedness, and more

		Valid documents

		Namespaces

		XML Parsing Technologies: DOM and SAX

		Prolog

		Namespace

		General Attributes

		Root Element

		Compilation Units

		Import Section

		Declaration Section

		Type Declarations

		Instantiation Parameters

		Function Declarations

		Value Parameters

		Definition Section

		Data Structures

		Algorithms

		Binding Section

		Function and Type Bindings

		Static Instantiation Parameter Bindings

		Dynamic Value Parameter Bindings

		Static Storage

		Representing Value

		Designators

		Summary

		The GILF Prototype

		Modern C++ Programming

		Traits

		Policies

		Template Metaprogramming

		Boost

		General Structure

		Coding Conventions

		Internal Representation

		Base Class GILF_Node

		Defining a Subclass of GILF_Node

		The Factory for GILF_Nodes

		General Facilities

		Logging

		Symbol Table

		Visiting GILF Nodes

		Instantiation Application

		Approach

		Visitation Graphs

		Implementation

		Summary

		Related Work

		Genericity

		Classification

		Generic Libraries

		Programming Languages

		Discussion

		Intermediate Representations

		Nongeneric Intermediate Representations

		Generic Intermediate Representations

		Discussion

		Conclusions and Future Work

		Conclusions

		Future Work

		The Utility Library

		Representing Nodes with Properties

		Nodes

		Properties

		A Generic Logging Facility

		XML Utilities

		Loki Extensions and Modifications

		Factory and Smart Pointers

		Truncating a Typelist

		Visiting Subnodes

		Auxiliary libgilf Components

		Transforming External into Internal Representation

		The Application Interface

		Implementing an Accessor

		Roundup

		Code Generation

		Visitation Graphs

		Implementation

		The XGILF Core Library

		Boolean

		Machine Types

		Integers

		Arrays

		Unicode Characters

		Functions

		Examples

		Mapping SuchThat to GILF

		Factorial

		XGILF Representation

		Generated C++ Representation

		Regression Tests

		Colophon

		Bibliography

