

Transactional Level Verification and Coverage Metrics by
Means of Symbolic Simulation?

Prakash M. Peranandam, Roland J. Weiss, Jürgen Ruf, and Thomas Kropf

Department of Computer Engineering
University of Tübingen

{peranand,weissr,ruf,kropf }@informatik.uni-tuebingen.de

Abstract. Assuring correctness of digital designs is one of the major tasks in the system design flow. Formal
methods have been proposed to accompany commonly used simulation approaches. The vital part missing
in all these techniques is the so-called coverage of functionalities. This paper aims to tackle this problem by
proposing a new method to verify the sequence of transactions among the modules of a system level design.
To accomplish this, we propose a model that captures the transactions of a given high level design. By symbol-
ically simulating this abstract model we can generate the set of all possible transaction sequences of the system
design. Verification of properties is carried out on these transactions stepwise. According to the status of the
verification results, every transaction will be assigned a special state which will be inherited by its succeed-
ing transactions. Once reaching the end, we calculate the coverage of the design functionalities by the set of
properties.
This approach finds at least two interesting applications. First, it can guide the verification engineer during
property specification by providing the set of abstract properties that cover the basic functionalities. Secondly,
the generated transaction sequences can be exploited to emit monitors for simulation runs of transactional level
SystemC designs.

1 Introduction

Gaining confidence on the correctness of digital designs is one of the major tasks in the system
design flow. That’s the reason why verification is playing a key role in design and development.
Present day needs and requirements force the designer to build increasingly complex designs,
which requires the designers to climb up the abstraction level ladder. This is because abstraction
is a powerful technique for the design and implementation of complex systems1. It allows
designers to tackle complexity by first hiding unnecessary details and then working on them
later. By systematically testing the functionality of the whole system early in the design process,
system level design [5] addresses design-process problems. High abstraction level testing or
verification enables the designer to find design flaws earlier and at less expense.

Transactional Level Modeling(TLM) [6, 11] is one of such abstraction levels. It is a high
level approach to model digital systems where details of communication among modules are
separated from the details of the implementation of the functional units or the communication
architecture. At the transactional level, the emphasis is more on the functionality of the data
transfers, i.e. what datas are transferred to and from what locations, and less on their actual
implementation. This approach makes it easier for the system level designer to verify the design
against specification requirements.

In general, because the field of verification has become the major part in system design with
around 70% of development time, a number of possibilities and techniques to make the process
efficient at various levels of design abstraction have been developed. Though there are quite a

? This work is sponsored by the German Research Grant (DFG-Projects KOMFORT and GRASP)
1 Systems in our context are hardware systems or embedded hardware/software systems such as bus arbiters, automotive

controllers or microprocessors.

number of appealing approaches to solve the verification problem, all of these mostly lack one
vital part, namelycoverage[9, 2].

Coverage metrics can be defined asWhat percentage of system functionalities are captured
by the set of all specified properties. This is an important characteristic of the verification pro-
cess, as most of the commercial and academic tools just deliver whether a property holds or
not, and produce a counterexample in the negative case. The problem is that the verification
engineer will never be sure whether the set of properties specified covers all system function-
alities.

We propose a new idea that solves the problem at a higher level of abstraction, namely
TLM. Because of its regular structure of interfaces between the modules, it is usually possible
to argue abouttransactionsbetween modules. The idea is that there are only a few permitted
sequences of message transactions and only the data change in every instance of the permitted
sequence. The catch point of our idea is as follows:at TLM abstraction level, the set of all
functionalities directly corresponds to the set of all transaction sequences. In other words,
every transaction sequence encapsulates one functionality of the design. By verifying this set
of transaction sequences against the set of properties specified by the verification engineer it is
possible to compute the coverage. To achieve this idea of transaction sequence verification, we
start with a much more abstract model calledMessage Sequence Model(MSM). For the rest of
the paper transaction sequences and message sequences mean the same.

Keating and Bricaud [10] clarify the verification strategy of transactional and block level
verification. Transactional level verification enhances the opportunity to find conceptual and
functionality errors in the design. In this paper we deal with verification of TLMs by means
of symbolic simulation of MSMs. A MSM is an abstraction of a TLM in the sense that it just
models the transactions and not the implementation of the modules. In other words, all the
modules are treated as black boxes, only the transactions between modules are modeled. This
is of interest because we can symbolically simulate the MSM to get the transaction sequences.
We use BDD based symbolic simulation [1]. The verification and generation of the set of all
properties are explained section wise. Section 2 and 3 discuss the MSM and its relation to TLM.
Section 4 presents the property specification, sections 5 and 6 address the property verification
algorithm and coverage metrics, respectively. Finally, section 7 concludes and outlines future
work.

2 Message Sequences

Before proceeding, let us define the central terms used in this paper and their intended meaning.

Functionality: The expected or intended behavior of a system that is designed for.
Module: A functional unit in a system design. Often referred to as component.
Message:Data or information that is transferred between modules.
Transaction: Communication between two modules by sending a message. The terms mes-

sage and transaction can be used interchangeably, although they have slightly different
meanings. However, in TLM it is common practice to identify a transaction with the mes-
sage it transfers.

Transaction Sequence:A finite trace or serial order of transactions that follow in logical order
or a recurrent pattern that is given by the model. Also called message sequence.

Function Call: In SystemC, an interface function call realizes a transaction.

Coverage: The number of functionalities of the design that are verified or captured by the
properties.

Transactional level modeling [6, 11] in SystemC is a high level approach to modeling digital
systems with emphasis on communication of modules or components within the system. Com-
munication mechanisms such as busses or FIFOs are modeled as channels, and are presented to
modules using interfaces. Due to its structural regularities of interfaces between the modules,
it is usually possible to argue abouttransactionsbetween modules. Transaction requests take
place by calling interface functions of these channel models. The key point of this level is to
give importance to the functionality of the data transfers. Data can be structured into messages.
We list the main characteristics of messages, thereby giving an informal definition.

– Every message has a unique name, a sender module, a receiver module and some informa-
tion2.

– No assumptions are made about the mechanism of message delivery except that it is a
lossless, order-preserving channel.

– Every message occurs only after all its preceding messages have already occurred in the run
so far.

– Message transfers will be modeled in SystemC as an interface function call with message
name as function name and other details as parameters of the function.

According to the above informal definition, a simulation run of a SystemC TLM [6] is a
sequence of function calls. Also note that every sequence starts with one of the primary input
messages and ends with one of the primary output messages of the design because they are
the first and last possible messages that can be transacted. Every sequence accomplishes the
intended functionality of the design in an abstract sense.

The above mentioned informal definition of message transactions reveals that one complete
cycle of simulation of a TLM generates a sequence of finite number of message transactions
and moreover this sequence will be one of the permitted sequences. Every such sequence cor-
responds to a functionality of that design. This is equivalent to the argument that the set of all
sequences of the model is nothing but the set of all functionalities of the design. The above
idea of message transaction sequence will answer at least two of the missing pieces that are
necessary for an effective verification of SystemC transaction based models according to [8].
The above mentioned two missing pieces are:

– Creation of an event and transaction database for effective verification, debugging and func-
tionality coverage analysis.

– Detection of illegal behaviors or transactions.

Let us consider a small example of a vending machine (see figure 1) to explain and support
the above arguments. The functionalities of the vending machine design are:

1. To get a coffee, the user has to press a coffee button and then has to insert the money, or
vice versa.

2. To get a tea, the user has to press a tea button and then has to insert the money, or vice versa.

3. If the user inserts the money first, and then presses the cancel button, the machine has to
give back the money. Only this ordering of transactions is possible.

put_money

put_coffee

put_tea

get_cancel

get_money

get_tea

get_coffee
 Vending_Machine

 User

Fig. 1.Transactional level model of a vending machine

As shown in figure 1, the design has only one main module with four input and three output
channels. Theuseris treated as a testbench module, which handles the transfer of messages to
and from the vending machine. The transactions of input information of pressing a coffee but-
ton, tea button or dropping the money is performed by the function callsget coffee, getteaand
get money, respectively. Correspondingly, the output information of coffee and tea is performed
by function callsput coffeeandput tea, respectively. Similarly, function callget cancelstands
for the input information of pressing the cancel button andput moneyfor output information
of giving the money back. The above argument applies if every transaction is communicated
by separate channels. In contrast, all the input and output messages can also be transferred
in a common channel. In this case the above messages will be passed as parameters using a
general functionsend. Independent of single or multi channel message passing, the message
transactions that occur during the simulation run can be registered using the SystemC verifica-
tion library. The below sequences show how the registered message sequence of a simulation
run looks like.

– The simulation run of the vending machine model for getting a coffee will end with the
following sequence of function calls in the channel that connects the two modules (user
and vending machine). In simulation sequence (seq 1) the user begins by pressing a coffee
button first.

get coffee, getmoney, putcoffee (seq 1)
In the next simulation sequence (seq 2), the user begins by inserting the money first.

get money, getcoffee, putcoffee (seq 2)

Both of the above sequences (seq 1) (seq 2) together are covering functionality 1.
– The simulation run of the vending machine model for getting a tea will end with the fol-

lowing sequence of function calls in the channel. In this simulation run the user begins by
inserting the money.

get money, gettea, puttea (seq 3)

The above sequence (seq 3) is partially covering the functionality 2.

The above explanation describes how the sequences encapsulate the intended functionality of
the design. Hence, we are ready to discuss MSM specifications that can be symbolically sim-
ulated in order to generate all possible sequences, which in turn are used for the verification
process and calculating the functionality coverage.

2 In our approach, at the transactional level, information transfer is more important than the content of the information.

3 The Message Sequence Model

Essentially, the Message Sequence Model is a basic model of a TLM that captures only the
transactions, and the details of transactions are specified by names. This model can also be
seen as a special instance of Message Sequence Chart (MSC) [4] which can be symbolically
simulated. This model has the information about the sender’s module and the function name3

it is calling, and then the receiver’s module and its respective function name called in response
to the sender’s message. The content of the information is not taken care because we are now
more interested in how and where messages are transferred than what is actually transferred. In
general, there should be a module serving as testbench that activates the primary input messages
and receives the primary output messages. In our example (see figure 1), theuser is treated as
a testbench module, which handles the transfer of messages to and from the vending machine.

The definition of a MSM is as follows:

Definition 1 A MSM is a quadruple A = (M, C, I,Γ), whereM = {m1, . . . ,mn} is a finite set
of message names andn ∈ N, C = {c1, . . . , ck} is a finite set of module names andk ∈ N,
I ⊂ M is a set of initial or primary input message names,Γ is the set of all transactions,
where a transaction T is given as a 6 tuple T =(Cs, Cr, O, Ms, Mr, &). WhereCs andCr ⊂
C are the set of sending and receiving modules respectively.Ms and Mr ⊂ M are the set of
sending and receiving messages respectively.O = {⇒,→} is a two element set that is used to
specify whether the order is preserved or not. The & symbol is used to syntactically seperate
the module and the messages inside the transactions.

c1 & Ms → c2 & Mr (def 1)

c1 & Ms ⇒ c2 & Mr (def 2)

c1 & Ms → c2 (def 3)

We write (def 1), (def 2), (def 3) to define the transactions of our model with this semantics:

1. There exists a transaction betweenc1 andc2.
2. Ms ⊂ M is the set of all messages that can be transacted fromc1 to c2. Syntactically, this

set is represented by conjunction of the elements.
3. By (def 1) we do not preserve the order of the elements, all possible combinations of the

elements are considered. By (def 2) we do preserve the order of the elements.
4. Mr ⊂ M are activated in response to the messages inMs. By (def 3) we express that the

messages inMs are the primary output messages. There will be no messages activated in
response, i.e.Mr = { }.

With the above formal definition of a MSM, we will create the MSM of our example. The test-
bench module is the one which activates the primary input messages and receives the primary
output messages. The syntax of the definition part of our example is explained below.

User & get coffee & get money → VendingMachine & put coffee (def 4)

User & get tea & get money → VendingMachine & put tea (def 5)

User & get money & get cancel ⇒ VendingMachine & put money (def 6)

3 message name

The above definitions of the MSM state that the sender moduleUser is sending mes-
sages by sequence of method callsget coffeeand thenget moneyto the receiver moduleVend-
ing Machine. The receiver moduleVendingMachinein reaction is now ready to send the re-
spective message that is activated by the received messages, i.e.put coffee. The same process
holds for the tea, too.

As defined by using→, we do not enforce the input sequence order, which means for defi-
nition (def 4) there will be two possible sequences. Namely, the user can activate theget coffee
first and thenget moneywhich will end up in sequence (seq 1), orget moneyfirst and then
the get coffeewhich will end up in sequence (seq 2). The same holds for definition (def 5).
Whereas by using⇒ we do enforce the input sequence as listed in the definition, i.e. definition
(def 6) has only one possibility that the user can first insert the money and only then he/she can
press the cancel button. The other direction sequence is not applicable.

The other important point in the model is the definition of final or primary output messages.
Primary output message always appear at the end of sequences. Their definitions are shown
below.

VendingMachine & put coffee→ User (def 7)

VendingMachine & put tea → User (def 8)

VendingMachine & put money → User (def 9)

Definitions (def 4) through (def 9) constitute the complete model of the vending machine. This
MSM can now be symbolically simulated. The process of symbolic simulation and message
sequence verification is discussed in section 5. The properties that are to be verified against the
design model have a special syntax which is discussed in the following section.

4 Property Specification

Linear-Time Temporal Logic(LTL) [3, 7] is used as property description language. This is the
most suitable temporal logic for this approach, as we argue only about the sequence of message
transfers in a single path at a time. The properties are specified in LTL, which is always in the
form A → B, in wordsif ’A’ then ’B’ .

We also allow the time bound enriched LTL called FLTL (Finite LTL)[12], which can be
annotated to the temporal operators. The time bound extension is allowed to increase the ex-
pressiveness of the properties. For example, time bounded formulas or properties can be used
to specify messages at a certain step of the sequence or to specify a message that occurs for a
defined number of consecutive steps and so on.

For the rest of the paper,Vars = {set of all declarations of messages in MSM} is called
variable domain. LTL formulas are defined recursively over the variable domain. IfA andB
are (F)LTL formulas, then

Definition 2

φ := v | ¬A | A ∧B | X A | X[m] A | F A | F[m,n] A | G A | G[m,n] A

is also a (F)LTL formula, wherev ∈ Vars,m ∈ N andn ∈ N ∪∞.

XA ≡ A holds at next time step X[n] A ≡ A holds at time stepn
FA ≡ A holds at some time step in futureF[m,n] A ≡ A holds eventually within time stepm andn
GA ≡ A holds at every time step in futureG[m,n] A ≡ A holds always from timestepm until time stepn

Table 1.LTL & FLTL operators

The temporal operators are defined as in table 1. Following the above definition, a property
looks likeA → B, whereA & B ∈ φ. Let us finish this section with example properties of the
vending machine.

get coffee∧ X (get money) → X[3] (put coffee) (prop 1)

get coffee∧ X (get money) → F (put coffee) (prop 2)

Property (prop 1) expresses that in a sequence if there is aget coffeeand at the next step a
get moneymessage, then at the third step there should be aput coffeemessage. By this we
are specifying the time step when a message occurs in a sequence, see (seq 1). In contrast,
property (prop 2) is more general by stating that if there is aget coffeemessage succeeded by
a get moneymessage, then eventually aput coffeemessage will occur in the sequence. This
property does not argue about the time step when the message occurs.

Hitherto, we have seen how every property argues about occurrence of messages in a se-
quence. In the next sections we will see how the sequences are verified and coverage is calcu-
lated.

5 Verification

Symbolic simulation can be applied in two fundamental ways: breadth first and depth first. Our
present approach deals with breadthwise exploration of the search space. This means that we
handle one element of all sequences at a time. So these elements will be parent elements for
their particular sequences. With these parent elements we compute the child (next) elements of
the sequences, which later become parent elements and so on until the end of the sequences.4

Basically, every sequence at any point of time will have one of the following four states
with respect to every property:start, accept, reject or pending. This means that a sequence
will have a number of unique states corresponding to every property. To clarify, if there are
two properties to be verified, then a sequence will have two states, each corresponding to one
property. Explanations of the different states are shown in table 2.

State Explanation

start Not even theif part of the property is satisfied by the sequence.
pendingOnly theif part of the property is satisfied by the sequence.
accept The property is fully satisfied (bothif andthenpart) by the sequence.
reject The property is not fully satisfied (i.e. onlyif and notthenpart) by the sequence.

Table 2.State explanation

Our aim is to verify the sequence on the fly, i.e. while symbolically simulating. Our al-
gorithm starts with initialization. The initialization process starts with collecting all possible

4 We use BDD based symbolic simulation. The BDD package used is CUDD from University of Colorado at Boulder.

input messages and storing them in a vector. Every element in this vector is the start of a new
sequence. We initialize all the sequences to thestart state for every property. Then all the start
elements of the sequence have to be verified against the set of all properties.

We verify the first element of the every sequence against the set of all properties. Verifica-
tion here means checking whether the element satisfies theif part of the properties. If it is true,
we declare the element state to bepending, if not we leave the already existing state, i.e.start
state. If theif part of the property consists of temporal operators, then it is handled with some
intermediate states, and later gets one of the above mentioned states.

Once initialized, our algorithm starts the routine. Note that the elements of the vector are
nothing but one of the message elements of the sequences. The main loop consists of four steps:

1. Symbolically simulate every element and collect all possible next step elements and store
them in a new vector.

2. A child element inherits the state status for all properties from its parent element of the
sequence.

3. Update the state status for the current elements for all properties. If it is apendingstate
sequence, check for thethenpart of the property. If it is astart state, then check for the
if part of the property. Depending on the satisfiability of the property all elements states
are updated. For example, if the inherited state of an element is apendingstate, and the
verification of the property’sthenpart is satisfiable then the state will be updated toaccept
state.

4. Replace the current parent elements by the child elements collected in step 1.

These above steps apply until all sequences reach the respective primary output messages.
Once we are at end of all sequences, change allpendingstates toreject state. This ends the
verification process.

6 Coverage Metrics

Once the verification process is completed, we will have all the information needed for cover-
age [9, 2] computation. Coverage information can be provided in three different flavors. First,
we can provide sequence wise property status. Given a sequence, we list the states of all prop-
erties with respect to that sequence. Second, we can give a property wise sequence status, i.e.
given a property, we list the set of all sequence states with respect to that property. The last
coverage information, also the most interesting one, provides the percentage of the total num-
ber of functionalities that are covered by the property set. Of course, we can also provide the
number of total functionalities and the number of functionalities covered and uncovered. To
refresh how functionality and sequence are related see section 2.

Every element of the vector that we obtain from the verification process has a state with
respect to every property. This state represents the state of the whole sequence with respect to
that property, because every child element in the sequence inherits and updates the state. So the
last element of the sequence only represents the updated state of the whole sequence. So the
first two flavors of coverage correspond to printing the states of the last elements with respect
to every property in two different orders.

The third flavor of coverage comes into focus now. As we saw before in the verification
section, every sequence is checked for all properties and will be assigned its respective states.
By analyzing the state assigning policy closely, we note that only if a sequence is touched at all

or partially satisfied by any property, then the possible state of that sequence for that property
can be eitheraccept, reject, or pending. This means if a sequence satisfies theif part of the
property then it can never have astart state. This makes the argument clear that if a sequence
is not satisfying theif part of the property then it can only have thestart state throughout.

The coverage metrick can be calculated by counting the sequences which have onlystart
states assigned for all the properties. This countk exactly implies the number of uncovered
functionalities. The percentage of the design functionality covered by the set of properties can
be computed with countk and the total number of sequences. If countk is greater than zero,
then the set of all properties is not complete, and thus needs one or more properties to be added
to the property set. Of course, this coverage computation is a trivial one since only finitely
many transactional sequences are involved. However this coverage of functionality leads to a
complete set of abstract properties. These properties in turn allow us to argue about inputs and
their corresponding outputs of every module in the system.

Let us explore this verification and coverage idea with our above vending machine example.
We start by specifying the property in order to check whether the design functions properly or
not. The main functionality is to get a coffee if we request a coffee, or to get a tea if we request
a tea, provided we insert money. Also assume that we start to specify properties with not much
information on the design. Then the initial set of properties could be:

get coffee∧ X (get money) → F (put coffee) (prop 3)

get tea ∧ X (get money) → F (put tea). (prop 4)

Applying our method on the MSM of the vending machine, the final report will declare that the
properties cover only two of the sequences and missed to cover the other three sequences. For
explanation let us list all the possible sets of sequences in table 3.

Sequence 1 2 3 4 5
Step 1 get coffee get tea get moneyget moneyget money
Step 2get moneyget moneyget coffee get tea get cancel
Step 3put coffee put tea put coffee put tea put money

(prop 3) accept reject start start start
(prop 4) reject accept start start start

Table 3.Set of all Sequences

Table 3 shows all possible sequences in different columns. The last two rows show the up-
dated states of the sequences for the properties. Seeing table 3, it is obvious that our properties
cover only the sequences in column 1 and 2, leaving the other three sequences untouched. So
we need to specify at least three more properties to cover these missed functionalities.

get money∧ X (get coffee) → F (put coffee) (prop 5)

get money∧ X (get tea) → F (put tea) (prop 6)

get money∧ X (get cancel) → F (put money) (prop 7)

After including these properties into the set of already existing properties, the verification algo-
rithm will result in a 100% coverage of functionalities. Of course, we can add more properties
to this set which argues about specific details of the sequences, for example (prop 8).

get coffee∧ X (get money) → X[3] (put coffee) (prop 8)

The other experiment that we carried out is the verification of a small part of a wireless protocol.
This protocol basically enables the lower module (lower layer in network protocol) to establish
a wireless connection by means of message transactions within the network protocol layers.
Due to the page limitation we did not include the results.

7 Conclusions and Future Work

This new verification approach is appealing because it results in fast verification of properties
on a high abstraction level. Furthermore, it provides information on coverage metrics. The
approach is orthogonal to established verification approaches and can complement existing
tools.

We see at least two interesting applications of our methodology. First, it can help guiding
the verification engineer with the set of abstract properties during verification at a lower level.
This means the verification engineer can always check whether the set of properties is complete
with respect to the design functionalities. Second, a depthwise algorithm can be exploited as a
monitor for SystemC TLM simulation runs, i.e. in SystemC it is possible to store the sequence
of message transfers. Having adopted a naming convention for both TLM and MSM, it is trivial
to monitor TLM simulations run by this approach.

The list of applications correspond with our goals to be achieved in future. Our immediate
work will focus on two main features. First, we want to implement the depth first symbolic sim-
ulation and compare it with the breadth first algorithm. Secondly, integration with the SystemC
verification library is targeted, so that the simulation kernel can call this application in order to
monitor its TLM simulation runs.

References

1. Randal E. Bryant. Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification.Proc. of Int.
Conf. on Computer-Aided Design (ICCAD ’95), pages 236–243, 1995.

2. Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics for temporal logic model checking.Lecture
Notes in Computer Science, Springer-Verlag Heidelberg, 2031 / 2001:528–542, 2001.

3. E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In D. Gabbay and H.J. Ohlbach,
editors,Temporal Logic, Lecture Notes in Artificial Intelligence. Springer-Verlag, July 1994.

4. Werner Damm and David Harel. LSCs: Breathing life into message sequence charts.Formal Methods in System Design,
19(1):45–80, 2001.

5. Avi Gal and Stuart McGarrity. Wring Out Better, Faster Results Through System-Level Design.www.mathworks.com,
Design Solutions EDA, 2003.

6. Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System Design with SystemC, volume Chapter 8. Kluwer
Academic Publishers, 2002.

7. O. Grumberg. LTL model checking. Tutorial auf der ICTL’94, Computer Science Department Technion, Haifa. Israel,
Bonn, Germany, July 1994.

8. C. Norris Ip and Stuart Swan. Using transaction-based verification in systemc. White paper, Cadence Design Systems,
Inc., www.SystemC.org, June 2002.

9. Sagi Katz, Orna Grumberg, and Danny Geist. ”Have I writted enough properties?” A method of comparison between
specification and implementation.Lecture Notes in Computer Science, Springer-Verlag Heidelberg, 1703 / 1999:280–
297, 1999.

10. Michael Keating and Pierre Bricaud.Reuse Methodology Manual For System-On-A-Chip Designs, volume Chapter 11.
Kluwer Academic Publishers, 2002.

11. Wolfgang M̈uller, Wolfgang Rosenstiel, and Jürgen Ruf (eds.).SystemC Methodologies and Applications. Kluwer Aca-
demic Publishers, 2003.

12. J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation based validation of FLTL formulas in executable system
descriptions. In R. Seepold, editor,Forum on Design Languages (FDL 2000), pages 311–319, T̈ubingen, Germany,
September 2000. Sig.-VHDL and ECSI.

